The given matrix \( A \) is:
\[ A = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}. \]The transpose of \( A \) is:
\[ A' = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}. \]From the condition \( A + A' = I \), where \( I \) is the identity matrix:
\[ \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} + \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \]Adding the matrices:
\[ \begin{bmatrix} 2\cos\alpha & 0 \\ 0 & 2\cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \]Equating elements:
\[ 2\cos\alpha = 1 \quad \Rightarrow \quad \cos\alpha = \frac{1}{2}. \]The value of \( \alpha \) satisfying \( \cos\alpha = \frac{1}{2} \) in the principal range is:
\[ \alpha = \frac{\pi}{3}. \]Hence, the correct answer is B) \( \frac{\pi}{3} \).
Show that the relation:
\[ R = \{(a, b) : (a - b) \text{ is a multiple of 5} \} \]on the set \( \mathbb{Z} \) of integers is an equivalence relation.
If
\[ A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix} \]Then find \( AB \) and \( BA \).
State Gauss's Law in electrostatics. Using it (i) find electric field due to a point source charge \( q \) and (ii) deduce Coulomb's law between source charge \( q \) and test charge \( q_0 \).
Compare features of p-type and n-type semiconductors. Draw circuit diagram of half-wave rectifier of p-n junction diode and explain it.
What is atomic model of magnetism? Differentiate between paramagnetic, diamagnetic, and ferromagnetic substances on this basis. Also, give one example of each.