The given matrix \( A \) is:
\[ A = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}. \]The transpose of \( A \) is:
\[ A' = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}. \]From the condition \( A + A' = I \), where \( I \) is the identity matrix:
\[ \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} + \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \]Adding the matrices:
\[ \begin{bmatrix} 2\cos\alpha & 0 \\ 0 & 2\cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \]Equating elements:
\[ 2\cos\alpha = 1 \quad \Rightarrow \quad \cos\alpha = \frac{1}{2}. \]The value of \( \alpha \) satisfying \( \cos\alpha = \frac{1}{2} \) in the principal range is:
\[ \alpha = \frac{\pi}{3}. \]Hence, the correct answer is B) \( \frac{\pi}{3} \).
The area of a parallelogram whose diagonals are given by $ \vec{u} + \vec{v} $ and $ \vec{v} + \vec{w} $, where:
$ \vec{u} = 2\hat{i} - 3\hat{j} + \hat{k}, \quad \vec{v} = -\hat{i} + \hat{k}, \quad \vec{w} = 2\hat{j} - \hat{k} $ is:
The direction ratios of the normal to the plane passing through the points
$ (1, 2, -3), \quad (1, -2, 1) \quad \text{and parallel to the line} \quad \frac{x - 2}{2} = \frac{y + 1}{3} = \frac{z}{4} \text{ is:} $
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $