Step 1: Differentiate \( x^x \).
Using logarithmic differentiation:
\[
y_1 = x^x \Rightarrow \ln y_1 = x \ln x
\]
\[
\frac{dy_1}{dx} = x^x (1 + \ln x)
\]
Step 2: Differentiate \( (\cos x)^{\tan x} \).
Using logarithmic differentiation:
\[
y_2 = (\cos x)^{\tan x} \Rightarrow \ln y_2 = \tan x \ln (\cos x)
\]
\[
\frac{dy_2}{dx} = (\cos x)^{\tan x} \left( \frac{\sec^2 x \ln (\cos x) - \tan x \tan x}{\cos x} \right)
\]
Step 3: Combine results.
\[
\frac{dy}{dx} = x^x (1 + \ln x) + (\cos x)^{\tan x} \left( \frac{\sec^2 x \ln (\cos x) - \tan^2 x}{\cos x} \right)
\]