The properties of cube roots of unity are:
\[ \omega^3 = 1, \quad 1 + \omega + \omega^2 = 0. \]Expanding the determinant:
\[ \begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{vmatrix} \]Using cofactor expansion along the first row:
\[ 1 \cdot \begin{vmatrix} \omega^2 & 1 \\ 1 & \omega \end{vmatrix} - \omega \cdot \begin{vmatrix} \omega & 1 \\ \omega^2 & \omega \end{vmatrix} + \omega^2 \cdot \begin{vmatrix} \omega & \omega^2 \\ \omega^2 & 1 \end{vmatrix} \]Evaluating each minor and simplifying using properties of \( \omega \):
\[ = 0. \]Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]