The properties of cube roots of unity are:
\[ \omega^3 = 1, \quad 1 + \omega + \omega^2 = 0. \]Expanding the determinant:
\[ \begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{vmatrix} \]Using cofactor expansion along the first row:
\[ 1 \cdot \begin{vmatrix} \omega^2 & 1 \\ 1 & \omega \end{vmatrix} - \omega \cdot \begin{vmatrix} \omega & 1 \\ \omega^2 & \omega \end{vmatrix} + \omega^2 \cdot \begin{vmatrix} \omega & \omega^2 \\ \omega^2 & 1 \end{vmatrix} \]Evaluating each minor and simplifying using properties of \( \omega \):
\[ = 0. \]The area of a parallelogram whose diagonals are given by $ \vec{u} + \vec{v} $ and $ \vec{v} + \vec{w} $, where:
$ \vec{u} = 2\hat{i} - 3\hat{j} + \hat{k}, \quad \vec{v} = -\hat{i} + \hat{k}, \quad \vec{w} = 2\hat{j} - \hat{k} $ is:
The direction ratios of the normal to the plane passing through the points
$ (1, 2, -3), \quad (1, -2, 1) \quad \text{and parallel to the line} \quad \frac{x - 2}{2} = \frac{y + 1}{3} = \frac{z}{4} \text{ is:} $
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $