Step 1: Use trigonometric identity \( \sin 2x = 2 \sin x \cos x \).
Step 2: Rewrite the integral using substitution:
\[
\int \sqrt{1 + \sin 2x} \,dx = \int (\sin x - \cos x) \,dx
\]
Step 3: Integrate each term.
\[
\int \sin x \,dx = -\cos x, \quad \int \cos x \,dx = \sin x
\]
Thus,
\[
\sin x - \cos x + c.
\]