If
\[ A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix} \]Then find \( AB \) and \( BA \).
Matrix multiplication is defined as:
\[ AB = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix} \times \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}. \]Calculating the elements:
\[ AB = \begin{bmatrix} (1 \cdot 2 + (-2) \cdot 4 + 3 \cdot 2) & (1 \cdot 3 + (-2) \cdot 5 + 3 \cdot 1) \\ (-4 \cdot 2 + 2 \cdot 4 + 5 \cdot 2) & (-4 \cdot 3 + 2 \cdot 5 + 5 \cdot 1) \end{bmatrix}. \] \[ = \begin{bmatrix} (2 - 8 + 6) & (3 - 10 + 3) \\ (-8 + 8 + 10) & (-12 + 10 + 5) \end{bmatrix}. \] \[ = \begin{bmatrix} 0 & -4 \\ 10 & 3 \end{bmatrix}. \]Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $