Step 1: Perform the matrix multiplication and addition:
\[
2 \left[ \begin{array}{cc} 1 & 3 \\ 0 & x \end{array} \right] = \left[ \begin{array}{cc} 2 & 6 \\ 0 & 2x \end{array} \right],
\]
\[
\left[ \begin{array}{cc} y & 0 \\ 1 & 2 \end{array} \right] = \left[ \begin{array}{cc} y & 0 \\ 1 & 2 \end{array} \right].
\]
Now, adding these matrices:
\[
\left[ \begin{array}{cc} 2 & 6 \\ 0 & 2x \end{array} \right] + \left[ \begin{array}{cc} y & 0 \\ 1 & 2 \end{array} \right] = \left[ \begin{array}{cc} 5 & 6 \\ 1 & 8 \end{array} \right].
\]
This gives the system of equations:
\[
2 + y = 5 \quad \text{(Equation 1)}
\]
\[
6 = 6 \quad \text{(Equation 2)}
\]
\[
0 + 1 = 1 \quad \text{(Equation 3)}
\]
\[
2x + 2 = 8 \quad \text{(Equation 4)}.
\]
Step 2: Solve Equation 1 for \( y \):
\[
y = 5 - 2 = 3.
\]
Step 3: Solve Equation 4 for \( x \):
\[
2x + 2 = 8 \quad \Rightarrow \quad 2x = 6 \quad \Rightarrow \quad x = 3.
\]
Thus, the solution is \( x = 3 \) and \( y = 3 \).
\bigskip