Step 1: Perform the matrix multiplication and addition: \[ 2 \left[ \begin{array}{cc} 1 & 3 \\ 0 & x \end{array} \right] = \left[ \begin{array}{cc} 2 & 6 \\ 0 & 2x \end{array} \right], \] \[ \left[ \begin{array}{cc} y & 0 \\ 1 & 2 \end{array} \right] = \left[ \begin{array}{cc} y & 0 \\ 1 & 2 \end{array} \right]. \] Now, adding these matrices: \[ \left[ \begin{array}{cc} 2 & 6 \\ 0 & 2x \end{array} \right] + \left[ \begin{array}{cc} y & 0 \\ 1 & 2 \end{array} \right] = \left[ \begin{array}{cc} 5 & 6 \\ 1 & 8 \end{array} \right]. \] This gives the system of equations: \[ 2 + y = 5 \quad \text{(Equation 1)} \] \[ 6 = 6 \quad \text{(Equation 2)} \] \[ 0 + 1 = 1 \quad \text{(Equation 3)} \] \[ 2x + 2 = 8 \quad \text{(Equation 4)}. \] Step 2: Solve Equation 1 for \( y \): \[ y = 5 - 2 = 3. \] Step 3: Solve Equation 4 for \( x \): \[ 2x + 2 = 8 \quad \Rightarrow \quad 2x = 6 \quad \Rightarrow \quad x = 3. \] Thus, the solution is \( x = 3 \) and \( y = 3 \).
The area of a parallelogram whose diagonals are given by $ \vec{u} + \vec{v} $ and $ \vec{v} + \vec{w} $, where:
$ \vec{u} = 2\hat{i} - 3\hat{j} + \hat{k}, \quad \vec{v} = -\hat{i} + \hat{k}, \quad \vec{w} = 2\hat{j} - \hat{k} $ is:
The direction ratios of the normal to the plane passing through the points
$ (1, 2, -3), \quad (1, -2, 1) \quad \text{and parallel to the line} \quad \frac{x - 2}{2} = \frac{y + 1}{3} = \frac{z}{4} \text{ is:} $
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $