The shortest distance \( d \) between two skew lines is given by:
\[
d=\frac{|(\vec{r_1}-\vec{r_2})\cdot(\vec{d_1}\times\vec{d_2})|}{|\vec{d_1}\times\vec{d_2}|},
\]
where \( \vec{r_1}=3\hat{i}+3\hat{j}-5\hat{k}, \vec{r_2}=\hat{i}+2\hat{j}-4\hat{k} \),
and \( \vec{d_1}=2\hat{i}+3\hat{j}+6\hat{k}, \vec{d_2}=2\hat{i}+3\hat{j}+6\hat{k} \).
1. Compute \( \vec{r_1}-\vec{r_2}=2\hat{i}+\hat{j}-\hat{k} \).
2. Compute \( \vec{d_1}\times\vec{d_2}=\vec{0} \) since \( \vec{d_1} \) and \( \vec{d_2} \) are parallel.
Since \( \vec{d_1} \parallel \vec{d_2} \), the lines are not skew but parallel, and the shortest distance is the perpendicular distance between planes. The distance is \( d=0 \).