Given:
\[ x \sqrt{1 + y} + y \sqrt{1 + x} + x = 0 \]for \( -1 < x < 1 \), prove that:
\[ \frac{dy}{dx} = -\frac{1}{(1+x)^2}. \]Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]