Given:
\[ x \sqrt{1 + y} + y \sqrt{1 + x} + x = 0 \]for \( -1 < x < 1 \), prove that:
\[ \frac{dy}{dx} = -\frac{1}{(1+x)^2}. \](b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $