Given:
\[ x \sqrt{1 + y} + y \sqrt{1 + x} + x = 0 \]for \( -1 < x < 1 \), prove that:
\[ \frac{dy}{dx} = -\frac{1}{(1+x)^2}. \]Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $