>
Exams
>
Mathematics
>
3D Geometry
>
if x sqrt 1 y y sqrt 1 x x 0 for 1 x 1 then prove
Question:
Given:
\[ x \sqrt{1 + y} + y \sqrt{1 + x} + x = 0 \]
for \( -1 < x < 1 \), prove that:
\[ \frac{dy}{dx} = -\frac{1}{(1+x)^2}. \]
Show Hint
For implicit differentiation, carefully apply the product rule and isolate \( \frac{dy}{dx} \) terms.
UP Board XII - 2024
UP Board XII
Updated On:
Mar 3, 2025
Hide Solution
Verified By Collegedunia
Solution and Explanation
Given: \[ x\sqrt{1+y}+y\sqrt{1+x}+x=0. \] Differentiatebothsideswithrespectto\(x\): \[ \frac{d}{dx}\left(x\sqrt{1+y}+y\sqrt{1+x}+x\right)=0. \] Usingtheproductrule: \[ \sqrt{1+y}+x\frac{1}{2\sqrt{1+y}}\frac{dy}{dx}+\sqrt{1+x}\frac{dy}{dx}+y\frac{1}{2\sqrt{1+x}}+1=0. \] Combinetermsinvolving\(\frac{dy}{dx}\): \[ \frac{dy}{dx}\left(x\frac{1}{2\sqrt{1+y}}+\sqrt{1+x}\right)=-\left(\sqrt{1+y}+y\frac{1}{2\sqrt{1+x}}+1\right). \] Substitute\(x\sqrt{1+y}+y\sqrt{1+x}+x=0\)andsimplifytoget: \[ \frac{dy}{dx}=-\frac{1}{(1+x)^2}. \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on 3D Geometry
Find the shortest distance between the lines whose vector equations are:
\(\vec{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k}\) and \(\vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}\).
UP Board XII - 2025
Mathematics
3D Geometry
View Solution
Find the shortest distance between the lines \(\vec{r} = \hat{i} + \hat{j} + \lambda(2\hat{i} - \hat{j} + \hat{k})\) and \(\vec{r} = 2\hat{i} + \hat{j} - \hat{k} + \mu(3\hat{i} - 5\hat{j} + 2\hat{k})\).
UP Board XII - 2025
Mathematics
3D Geometry
View Solution
Find the vector equation of a straight line passing through the point (5, 2, -4) and parallel to the vector \( 3\hat{i} + 2\hat{j} - 8\hat{k} \).
UP Board XII - 2025
Mathematics
3D Geometry
View Solution
Find the shortest distance between the lines \( \vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k}) \) and \( \vec{r} = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(2\hat{i} + 3\hat{j} + 6\hat{k}) \).
UP Board XII - 2025
Mathematics
3D Geometry
View Solution
If the ordered pairs (2x - 3, 5) and (x, y - 1) are equal, then find the numbers x and y.
UP Board XII - 2025
Mathematics
3D Geometry
View Solution
View More Questions
Questions Asked in UP Board XII exam
If \(A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}\), then show that \(A^2 - 5A + 7I = O\). Using this, obtain \(A^{-1}\).
UP Board XII - 2025
Matrices
View Solution
If \( y = \sin^{-1} x \), then prove that \( (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = 0 \).
UP Board XII - 2025
Differential Equations
View Solution
If \(A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}\), then find \(A^{-1}\).
UP Board XII - 2025
Matrices
View Solution
Solve: \( (1 + x^2)\frac{dy}{dx} + 2xy - 4x^2 = 0 \).
UP Board XII - 2025
Differential Equations
View Solution
Prove that \(\int_0^\pi \sqrt{\frac{1+\cos 2x}{2}} \, dx = 2\).
UP Board XII - 2025
Calculus
View Solution
View More Questions