For what values of $ \lambda $ and $ \mu $, the following system of equations has a unique solution? $ 2x + 3y + 5z = 9 $$ 7x + 3y - 2z = 8 $ $ 2x + 3y + \lambda z = \mu $
Let the function $ f(x) $ be defined as follows: $$ f(x) = \begin{cases} (1 + | \sin x |)^{\frac{a}{|\sin x|}}, & -\frac{\pi}{6}<x<0 \\b, & x = 0 \\ \frac{\tan 2x}{\tan 3x}, & 0<x<\frac{\pi}{6} \end{cases} $$ Then the values of $ a $ and $ b $ are:
If l, m, n are the pth, qth and rth terms of a G.P. respectively and l, m, n > 0, then
\[ \begin{vmatrix} \log_l p & 1 \\ \log_m q & 1 \\ \log_n r & 1 \end{vmatrix} \]