Given:
\[ \det(\text{adj}(2A - A^T) \cdot \text{adj}(A - 2A^T)) = 2^8. \]
Recall the Property of Determinants:
For any square matrix \(B\), we have:
\[ \det(\text{adj}(B)) = (\det(B))^{n-1} \quad \text{for an \(n \times n\) matrix.} \]
Since \(A\) is a \(3 \times 3\) matrix, we consider:
\[ \det(A - 2A^T) = \pm 4, \quad (\det(A - 2A^T))^2 = 16. \]
Matrix Calculations:
Consider:
\[ A - 2A^T = \begin{bmatrix} 1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} - 2 \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 1 \\ \alpha & 1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 0 & \alpha \\ -3 & 0 & -1 \\ -2\alpha & -1 & -2 \end{bmatrix}. \]
Equating Determinants:
Given \(\alpha = 1\), the determinant becomes: \[ \det(A) = -4, \quad (\det(A))^2 = 16. \]
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]