The direction ratios of line \( AB \) are given by:
\[ (16 - 4, -2 - 6, 4 - (-2)) = (12, -8, 6) \]
The parametric equation of the line passing through point \( A(4, 6, -2) \) in the direction of \( AB \) is:
\[ x = 4 + 12t, \quad y = 6 - 8t, \quad z = -2 + 6t \]
Given that the distance from point \( A \) to point \( P(a, b, c) \) is 21 units, we use the distance formula:
\[ \sqrt{(12t)^2 + (-8t)^2 + (6t)^2} = 21 \]
Squaring both sides:
\[ 144t^2 + 64t^2 + 36t^2 = 441 \] \[ 244t^2 = 441 \implies t^2 = \frac{441}{244} \implies t = \pm \frac{21}{\sqrt{244}} = \pm \frac{21}{2\sqrt{61}} \]
Substituting the value of \( t \) into the parametric equations:
\[ a = 4 + 12 \left( \frac{6}{7} \right) = 22, \quad b = 6 - 8 \left( \frac{6}{7} \right) = 0, \quad c = -2 + 6 \left( \frac{6}{7} \right) = 7 \]
Thus, \( P(a, b, c) = (22, 0, 7) \).
Next, we find the distance between points \( P(22, 0, 7) \) and \( Q(4, -12, 3) \):
\[ \text{Distance} = \sqrt{(22 - 4)^2 + (0 - (-12))^2 + (7 - 3)^2} \] \[ = \sqrt{18^2 + 12^2 + 4^2} \] \[ = \sqrt{324 + 144 + 16} \] \[ = \sqrt{484} = 22 \]
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)