Given integral:
\[ \int_{0}^{\frac{\pi}{4}} \frac{\sin^2 x}{1 + \sin x \cos x} dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin^2 x}{1 + \frac{1}{2} \sin 2x} dx = \int_{0}^{\frac{\pi}{4}} \frac{1 - \cos 2x}{2 + \sin 2x} dx \]
We separate this into two integrals:
\[ \int_{0}^{\frac{\pi}{4}} \frac{1}{2 + \sin 2x} dx - \int_{0}^{\frac{\pi}{4}} \frac{\cos 2x}{2 + \sin 2x} dx \]
Denote these integrals as \(I_1\) and \(I_2\) respectively:
\[ I_1 = \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 + \sin 2x}, \quad I_2 = \int_{0}^{\frac{\pi}{4}} \frac{\cos 2x}{2 + \sin 2x} dx \]
For \(I_1\), let \(\tan x = t\), hence:
\[ dx = \frac{dt}{1 + t^2}, \quad \sin 2x = \frac{2t}{1 + t^2} \]
Substituting these into the integral:
\[ I_1 = \frac{1}{2} \int_{0}^{1} \frac{dt}{\left(t + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \frac{\pi}{6\sqrt{3}} \]
For \(I_2\), we use:
\[ I_2 = \int_{0}^{\frac{\pi}{4}} \frac{\cos 2x}{2 + \sin 2x} dx \]
Applying another substitution and evaluating, we find:
\[ I_2 = \frac{1}{2} \ln \left(\frac{3}{2}\right) \]
Thus, the original integral becomes:
\[ I = I_1 - I_2 = \frac{\pi}{6\sqrt{3}} - \frac{1}{2} \ln \left(\frac{3}{2}\right) \]
Given that:
\[ \int_{0}^{\frac{\pi}{4}} \frac{\sin^2 x}{1 + \sin x \cos x} dx = \frac{1}{a} \ln_e \left(\frac{a}{3}\right) + \frac{\pi}{b\sqrt{3}} \]
Comparing terms, we find: \[ a = 2, \quad b = 6 \]
Therefore:
\[ a + b = 2 + 6 = 8 \]
Find the area of the region defined by the conditions: $ \left\{ (x, y): 0 \leq y \leq \sqrt{9x}, y^2 \geq 3 - 6x \right\} \text{(in square units)} $