Given:
\[ A = \{1, 2, 3, \ldots, 100\} \]
Step 1: Define the relation \( R \)
\[ R \Rightarrow 2x = 3y \Rightarrow y = \frac{2x}{3} \]
Therefore, \[ R = \{(3, 2), (6, 4), (9, 6), \ldots, (99, 66)\} \]
Number of elements in \( R \): \[ n(R) = 33 \]
Since \( R \subset R_1 \)
Step 2: Define \( R_1 \)
\[ R_1 = \{(3, 2), (6, 4), (9, 6), \ldots, (99, 66), (2, 3), (4, 6), (6, 9), \ldots, (66, 99)\} \]
Step 3: Minimum number of elements
\[ \text{Minimum number of elements in } R_1 = 66 \]
Final Answer:
\[ \boxed{66} \]
The relation \( R \) consists of ordered pairs \( (x, y) \) such that \( 2x = 3y \). For \( x \) and \( y \) to satisfy this relation, \( x \) and \( y \) must form pairs with specific integer values that satisfy \( 2x = 3y \).
Thus, the pairs in \( R \) are:
\[ R = \{(3, 2), (6, 4), (9, 6), (12, 8), \ldots, (99, 66)\}. \]
There are 33 such pairs in \( R \), so:
\[ n(R) = 33. \]
To make \( R_1 \) symmetric, we include both \( (x, y) \) and \( (y, x) \) for each pair in \( R \). Thus, the pairs in \( R_1 \) are:
\[ R_1 = \{(3, 2), (2, 3), (6, 4), (4, 6), (9, 6), (6, 9), \ldots, (99, 66), (66, 99)\}. \]
This doubles the number of elements:
\[ n = 2 \times 33 = 66. \]
Therefore, the minimum value of \( n \) is: \[ 66 \]
Let $R$ be a relation defined on the set $\{1,2,3,4\times\{1,2,3,4\}$ by \[ R=\{((a,b),(c,d)) : 2a+3b=3c+4d\} \] Then the number of elements in $R$ is
Let \(M = \{1, 2, 3, ....., 16\}\), if a relation R defined on set M such that R = \((x, y) : 4y = 5x – 3, x, y (\in) M\). How many elements should be added to R to make it symmetric.
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.