Given:
\[ \lim_{x \to 0} \frac{a x^2 \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \right) - b \left( x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots \right) + c x \left( 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \ldots \right)}{x^3 \cdot \frac{\sin x}{x}} \]
\[ = \lim_{x \to 0} \frac{(c - b)x + \left( \frac{b}{2} - c + a \right)x^2 + \left( a - \frac{b}{3} + \frac{c}{2} \right)x^3 + \ldots}{x^3} = 1 \]
Step 1: Equating coefficients
\[ c - b = 0, \quad \frac{b}{2} - c + a = 0 \]
\[ a - \frac{b}{3} + \frac{c}{2} = 1 \]
Step 2: Solving the equations
From \( c - b = 0 \Rightarrow b = c \)
Substituting into \( \frac{b}{2} - c + a = 0 \): \[ \frac{b}{2} - b + a = 0 \Rightarrow a = \frac{b}{2} \]
Substituting into \( a - \frac{b}{3} + \frac{c}{2} = 1 \): \[ \frac{b}{2} - \frac{b}{3} + \frac{b}{2} = 1 \] \[ \Rightarrow \frac{4b}{3} = 1 \Rightarrow b = \frac{3}{2} \]
\[ \therefore a = \frac{3}{4}, \quad b = \frac{3}{2}, \quad c = \frac{3}{2} \]
Step 3: Finding \( a^2 + b^2 + c^2 \)
\[ a^2 + b^2 + c^2 = \left(\frac{9}{16}\right) + \left(\frac{9}{4}\right) + \left(\frac{9}{4}\right) = \frac{9}{16} + \frac{18}{4} = \frac{81}{16} \]
Step 4:
\[ 16(a^2 + b^2 + c^2) = 81 \]
Final Answer:
\[ \boxed{81} \]
The limit expression is:
\[ \lim_{x \to 0} \frac{ax^e + b \log_e(1 + x) + cxe^{-x}}{x^2 \sin x} = 1. \]
Expand each term in the numerator around \( x = 0 \):
For \( ax^e \), use the Taylor expansion:
\[ ax^e = ax \left( 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \right). \]
For \( b \log_e(1 + x) \), use the expansion \( \log_e(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots \):
\[ b \log_e(1 + x) = b \left( x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots \right). \]
For \( cxe^{-x} \), use the expansion \( e^{-x} = 1 - x + \frac{x^2}{2!} - \cdots \):
\[ cxe^{-x} = cx \left( 1 - x + \frac{x^2}{2} - \cdots \right). \]
Substitute these expansions into the numerator:
\[ \lim_{x \to 0} \frac{\left( a - b + c \right) x + \left( \frac{b}{2} - c + a \right) x^2 + \left( \frac{a}{3} - \frac{b}{2} + \frac{c}{2} \right) x^3 + \cdots}{x^3 \sin x}. \]
Since \( \sin x \approx x \) as \( x \to 0 \), we rewrite the expression as:
\[ \lim_{x \to 0} \frac{a - b + c + \left( \frac{b}{2} - c + a \right) x + \left( \frac{a}{3} - \frac{b}{2} + \frac{c}{2} \right) x^2 + \cdots}{x^2} = 1. \]
By matching terms, we get:
\[ c = b = 0, \quad \frac{b}{2} - c + a = 0. \]
Solving these equations, we find:
\[ a = \frac{3}{4}, \quad b = c = \frac{3}{2}. \]
Calculate \( a^2 + b^2 + c^2 \):
\[ a^2 + b^2 + c^2 = \frac{9}{16} + \frac{9}{4} + \frac{9}{4} = \frac{9 + 36 + 36}{16} = \frac{81}{16}. \]
Thus, \[ 16(a^2 + b^2 + c^2) = 81. \]
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.