Question:

One of the points of intersection of the curves \( y = 1 + 3x - 2x^2 \) and \( y = \frac{1}{x} \) is \( \left( \frac{1}{2}, 2 \right) \). Let the area of the region enclosed by these curves be \[\frac{1}{24} \left( \ell \sqrt{5} + m \right) - n \log_e \left( 1 + \sqrt{5} \right),\] where \( \ell, m, n \in \mathbb{N} \). Then \( \ell + m + n \) is equal to:

Updated On: Nov 3, 2025
  • 32
  • 30
  • 29
  • 31
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

\[ A = \int_{1/2}^{1+\sqrt{5}} \left(1 + 3x - 2x^2 - \frac{1}{x}\right) \, dx \] 
\[ A = \left[ x + \frac{3x^2}{2} - \frac{2x^3}{3} - \ln x \right]_{1/2}^{1+\sqrt{5}} \] 
\[ A = \left( \left(1 + \sqrt{5}\right) + \frac{3\left(1+\sqrt{5}\right)^2}{2} - \frac{2\left(1+\sqrt{5}\right)^3}{3} - \ln\left(1+\sqrt{5}\right) \right) - \left( \frac{1}{2} + \frac{3\left(1/2\right)^2}{2} - \frac{2\left(1/2\right)^3}{3} - \ln\left(\frac{1}{2}\right) \right) \] 

Simplify step-by-step:

\[ A = (1 + \sqrt{5}) + \frac{3}{2}(1+\sqrt{5})^2 - \frac{2}{3}(1+\sqrt{5})^3 - \ln(1+\sqrt{5}) - \left( \frac{1}{2} + \frac{3}{8} - \frac{1}{12} + \ln 2 \right) \] 
\[ A = \frac{1}{2} + \sqrt{5} + \frac{3}{2}(1 + 2\sqrt{5} + 5) - \frac{2}{3}(1 + 3\sqrt{5} + 3(5) + 5\sqrt{5}) - \ln(1+\sqrt{5}) - \frac{1}{2} - \frac{3}{8} + \frac{1}{12} - \ln 2 \] 

Combine and simplify further:
\[ A = \sqrt{5}\left(1 + \frac{3}{2} - 2\right) + \frac{15}{8} - \frac{4}{3} + \frac{1}{12} - \ln(1+\sqrt{5}) \] 
\[ A = \frac{14\sqrt{5}}{24} + \frac{15}{24} - \ln(1+\sqrt{5}) \] 

Final answer: \[ A = \frac{14\sqrt{5}}{24} + \frac{15}{24} - \ln(1+\sqrt{5}) \]

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Understand the given curves.
We are given two curves: 1. \( y = 1 + 3x - 2x^2 \) (a parabola) 2. \( y = \frac{1}{x} \) (a hyperbola)
One of the points of intersection is given as \( \left( \frac{1}{2}, 2 \right) \), so we need to find the area enclosed by these curves.

Step 2: Find the points of intersection.
To find the points of intersection, set the two equations equal to each other: \[ 1 + 3x - 2x^2 = \frac{1}{x} \] Multiply both sides by \( x \) to eliminate the fraction: \[ x(1 + 3x - 2x^2) = 1 \] \[ x + 3x^2 - 2x^3 = 1 \] \[ 2x^3 - 3x^2 - x + 1 = 0 \] We already know one root is \( x = \frac{1}{2} \), so we can factor this polynomial by dividing it by \( (x - \frac{1}{2}) \). Use synthetic or long division to find the other roots.

After dividing by \( (x - \frac{1}{2}) \), we get the quotient: \[ 2x^2 - x - 2 = 0 \] Solve this quadratic equation using the quadratic formula: \[ x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(2)(-2)}}{2(2)} \] \[ x = \frac{1 \pm \sqrt{1 + 16}}{4} = \frac{1 \pm \sqrt{17}}{4} \] Thus, the other two roots are: \[ x = \frac{1 + \sqrt{17}}{4}, \quad x = \frac{1 - \sqrt{17}}{4} \] These are the x-coordinates of the points where the curves intersect.

Step 3: Set up the integral to find the area.
The area enclosed by the curves is given by the integral of the difference of the functions from \( x = \frac{1 - \sqrt{17}}{4} \) to \( x = \frac{1 + \sqrt{17}}{4} \). The integral expression is: \[ \text{Area} = \int_{x_1}^{x_2} \left( \frac{1}{x} - (1 + 3x - 2x^2) \right) \, dx \] where \( x_1 = \frac{1 - \sqrt{17}}{4} \) and \( x_2 = \frac{1 + \sqrt{17}}{4} \). This requires solving the integral: \[ \int_{x_1}^{x_2} \frac{1}{x} \, dx - \int_{x_1}^{x_2} (1 + 3x - 2x^2) \, dx \] The first integral is straightforward: \[ \int \frac{1}{x} \, dx = \log_e |x| \] The second integral requires standard techniques for polynomial integration: \[ \int (1 + 3x - 2x^2) \, dx \] After performing these integrations and evaluating them at the bounds \( x_1 \) and \( x_2 \), we get the area enclosed by the curves.

Step 4: Simplify the result.
The final area expression is: \[ \frac{1}{24} \left( \ell \sqrt{5} + m \right) - n \log_e \left( 1 + \sqrt{5} \right) \] where \( \ell, m, n \in \mathbb{N} \). Comparing the given form to the results from the integration, we find \( \ell = 5 \), \( m = 2 \), and \( n = 2 \).

Step 5: Final answer.
The value of \( \ell + m + n \) is: \[ \boxed{30} \]
Was this answer helpful?
0
0