If \( \sqrt{5} - i\sqrt{15} = r(\cos\theta + i\sin\theta), -\pi < \theta < \pi, \) then
\[ r^2(\sec\theta + 3\csc^2\theta) = \]
Evaluate the integral: \[ \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{dx}{\sec^2 x + (\tan^{2022} x - 1)(\sec^2 x - 1)} \]
Let the foci of a hyperbola $ H $ coincide with the foci of the ellipse $ E : \frac{(x - 1)^2}{100} + \frac{(y - 1)^2}{75} = 1 $ and the eccentricity of the hyperbola $ H $ be the reciprocal of the eccentricity of the ellipse $ E $. If the length of the transverse axis of $ H $ is $ \alpha $ and the length of its conjugate axis is $ \beta $, then $ 3\alpha^2 + 2\beta^2 $ is equal to:
When \( |x| < 2 \), the coefficient of \( x^2 \) in the power series expansion of
\[ \frac{x}{(x-2)(x-3)} \]
is: