To ensure continuity at \(x = 0\), we require \( \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) \).
Left-hand limit:
\[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1 - \cos 2x}{x^2} = 2 \]
This gives \( f(0) = \alpha = 2 \).
Right-hand limit:
\[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\beta \sqrt{1 - \cos x}}{x} = \frac{\beta}{\sqrt{2}} = 2 \implies \beta = 2\sqrt{2} \]
Calculating \( \alpha^2 + \beta^2 \):
\[ \alpha^2 + \beta^2 = 4 + 8 = 12 \]
Match List-I with List-II
| List-I | List-II |
|---|---|
| (A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
| (B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
| (C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
| (D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: