To ensure continuity at \(x = 0\), we require \( \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) \).
Left-hand limit:
\[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1 - \cos 2x}{x^2} = 2 \]
This gives \( f(0) = \alpha = 2 \).
Right-hand limit:
\[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\beta \sqrt{1 - \cos x}}{x} = \frac{\beta}{\sqrt{2}} = 2 \implies \beta = 2\sqrt{2} \]
Calculating \( \alpha^2 + \beta^2 \):
\[ \alpha^2 + \beta^2 = 4 + 8 = 12 \]
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)