Set up the system in matrix form:
The system of equations can be represented in matrix form as: \[ \begin{pmatrix} 1 & \sqrt{2} \sin \alpha & \sqrt{2} \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ 1 & \sin \alpha & -\cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \]
Condition for a Non-Trivial Solution:
For the system to have a non-trivial solution, the determinant of the matrix must be zero: \[ \text{det} \begin{pmatrix} 1 & \sqrt{2} \sin \alpha & \sqrt{2} \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ 1 & \sin \alpha & -\cos \alpha \end{pmatrix} = 0 \]
Calculate the Determinant:
Expanding the determinant: \[ \text{det} = 1 \times (\cos \alpha \times (-\cos \alpha) - \sin \alpha \times \sin \alpha) - \sqrt{2} \sin \alpha \times (1 \times -\cos \alpha - 1 \times \sin \alpha) + \sqrt{2} \cos \alpha \times (1 \times \sin \alpha - 1 \times \cos \alpha) \]
Simplifying this determinant leads to an equation in terms of \(\alpha\) that must be solved for \(\alpha\).
Solve for \(\alpha\):
Solving the resulting trigonometric equation, we find that \(\alpha = \frac{5\pi}{24}\).
\[ \alpha + \frac{\pi}{8} = n\pi \pm \frac{\pi}{3} \] For \(n = 0\), \[ x = \frac{\pi}{3} - \frac{\pi}{8} = \frac{5\pi}{24}. \]
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is: