Set up the system in matrix form:
The system of equations can be represented in matrix form as: \[ \begin{pmatrix} 1 & \sqrt{2} \sin \alpha & \sqrt{2} \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ 1 & \sin \alpha & -\cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \]
Condition for a Non-Trivial Solution:
For the system to have a non-trivial solution, the determinant of the matrix must be zero: \[ \text{det} \begin{pmatrix} 1 & \sqrt{2} \sin \alpha & \sqrt{2} \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ 1 & \sin \alpha & -\cos \alpha \end{pmatrix} = 0 \]
Calculate the Determinant:
Expanding the determinant: \[ \text{det} = 1 \times (\cos \alpha \times (-\cos \alpha) - \sin \alpha \times \sin \alpha) - \sqrt{2} \sin \alpha \times (1 \times -\cos \alpha - 1 \times \sin \alpha) + \sqrt{2} \cos \alpha \times (1 \times \sin \alpha - 1 \times \cos \alpha) \]
Simplifying this determinant leads to an equation in terms of \(\alpha\) that must be solved for \(\alpha\).
Solve for \(\alpha\):
Solving the resulting trigonometric equation, we find that \(\alpha = \frac{5\pi}{24}\).
\[ \alpha + \frac{\pi}{8} = n\pi \pm \frac{\pi}{3} \] For \(n = 0\), \[ x = \frac{\pi}{3} - \frac{\pi}{8} = \frac{5\pi}{24}. \]
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
For the AC circuit shown in the figure, $ R = 100 \, \text{k}\Omega $ and $ C = 100 \, \text{pF} $, and the phase difference between $ V_{\text{in}} $ and $ (V_B - V_A) $ is 90°. The input signal frequency is $ 10^x $ rad/sec, where $ x $ is:
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?
