Question:

If the system of equations
\( x + \left( \sqrt{2} \sin \alpha \right) y + \left( \sqrt{2} \cos \alpha \right) z = 0 \)
\( x + \left( \cos \alpha \right) y + \left( \sin \alpha \right) z = 0 \)
\( x + \left( \sin \alpha \right) y - \left( \cos \alpha \right) z = 0 \)
has a non-trivial solution, then \( \alpha \in \left( 0, \frac{\pi}{2} \right) \) is equal to:

Updated On: Nov 26, 2024
  • \( \frac{3\pi}{4} \)
  • \( \frac{7\pi}{24} \)
  • \( \frac{5\pi}{24} \)
  • \( \frac{11\pi}{24} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Set up the system in matrix form: 
The system of equations can be represented in matrix form as: \[ \begin{pmatrix} 1 & \sqrt{2} \sin \alpha & \sqrt{2} \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ 1 & \sin \alpha & -\cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \] 

Condition for a Non-Trivial Solution: 
For the system to have a non-trivial solution, the determinant of the matrix must be zero: \[ \text{det} \begin{pmatrix} 1 & \sqrt{2} \sin \alpha & \sqrt{2} \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ 1 & \sin \alpha & -\cos \alpha \end{pmatrix} = 0 \] 

Calculate the Determinant: 
Expanding the determinant: \[ \text{det} = 1 \times (\cos \alpha \times (-\cos \alpha) - \sin \alpha \times \sin \alpha) - \sqrt{2} \sin \alpha \times (1 \times -\cos \alpha - 1 \times \sin \alpha) + \sqrt{2} \cos \alpha \times (1 \times \sin \alpha - 1 \times \cos \alpha) \] 
Simplifying this determinant leads to an equation in terms of \(\alpha\) that must be solved for \(\alpha\). 

Solve for \(\alpha\): 
Solving the resulting trigonometric equation, we find that \(\alpha = \frac{5\pi}{24}\). 
\[ \alpha + \frac{\pi}{8} = n\pi \pm \frac{\pi}{3} \] For \(n = 0\), \[ x = \frac{\pi}{3} - \frac{\pi}{8} = \frac{5\pi}{24}. \]

Was this answer helpful?
0
0

Top Questions on Matrices and Determinants

View More Questions

Questions Asked in JEE Main exam

View More Questions