Let \(A\) be a \(3 \times 3\) matrix:
\[ A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \]
Given that:
\[ A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \]
This implies: \[ a_1 + a_2 + a_3 = 3 \quad \dots (1) \]
\[ b_1 + b_2 + b_3 = 3 \quad \dots (2) \]
\[ c_1 + c_2 + c_3 = 3 \quad \dots (3) \]
Now, we want to maximize \(\det(A)\):
\[ \det(A) = a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - (a_3b_2c_1 + a_1b_3c_2 + a_2b_1c_3). \]
To achieve the maximum value, we set \(a_1 = b_2 = c_3 = 3\) and all other elements to zero:
\[ \det(A) = 3 \times 3 \times 3 = 27. \]
Thus, the maximum value of \(\det(A)\) is:
\[ 27 \]
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to:
If \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] and
and \( f(0) = \frac{5}{4} \), then the value of \[ 12 \left( y \left( \frac{\pi}{4} \right) - \frac{1}{e^2} \right) \] equals to: