Let \(A\) be a \(3 \times 3\) matrix:
\[ A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \]
Given that:
\[ A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \]
This implies: \[ a_1 + a_2 + a_3 = 3 \quad \dots (1) \]
\[ b_1 + b_2 + b_3 = 3 \quad \dots (2) \]
\[ c_1 + c_2 + c_3 = 3 \quad \dots (3) \]
Now, we want to maximize \(\det(A)\):
\[ \det(A) = a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - (a_3b_2c_1 + a_1b_3c_2 + a_2b_1c_3). \]
To achieve the maximum value, we set \(a_1 = b_2 = c_3 = 3\) and all other elements to zero:
\[ \det(A) = 3 \times 3 \times 3 = 27. \]
Thus, the maximum value of \(\det(A)\) is:
\[ 27 \]
Match List-I with List-II
List-I (Matrix) | List-II (Inverse of the Matrix) |
---|---|
(A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
(B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
(C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
(D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is: