Let \(A\) be a \(3 \times 3\) matrix:
\[ A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \]
Given that:
\[ A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \]
This implies: \[ a_1 + a_2 + a_3 = 3 \quad \dots (1) \]
\[ b_1 + b_2 + b_3 = 3 \quad \dots (2) \]
\[ c_1 + c_2 + c_3 = 3 \quad \dots (3) \]
Now, we want to maximize \(\det(A)\):
\[ \det(A) = a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - (a_3b_2c_1 + a_1b_3c_2 + a_2b_1c_3). \]
To achieve the maximum value, we set \(a_1 = b_2 = c_3 = 3\) and all other elements to zero:
\[ \det(A) = 3 \times 3 \times 3 = 27. \]
Thus, the maximum value of \(\det(A)\) is:
\[ 27 \]
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
If the four distinct points $ (4, 6) $, $ (-1, 5) $, $ (0, 0) $ and $ (k, 3k) $ lie on a circle of radius $ r $, then $ 10k + r^2 $ is equal to
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
