Let the equations of the lines be:
For Line 1:
\[ \frac{x + 6}{3} = \frac{y}{2} = \frac{z + 1}{1} = \lambda \] Then \(x = 3\lambda - 6\), \(y = 2\lambda\), \(z = \lambda - 1\).
For Line 2:
\[ \frac{x - 7}{4} = \frac{y - 9}{3} = \frac{z - 4}{2} = \mu \] Then \(x = 4\mu + 7\), \(y = 3\mu + 9\), \(z = 2\mu + 4\).
By equating the coordinates, we get the system of equations:
\[ \begin{aligned} 3\lambda - 6 &= 4\mu + 7 \quad (1) \\ 2\lambda &= 3\mu + 9 \quad (2) \\ \lambda - 1 &= 2\mu + 4 \quad (3) \end{aligned} \] Solving these equations, we find the values of \(\lambda\) and \(\mu\) at the point of intersection as \(\lambda = 3\) and \(\mu = -1\). Thus, the intersection point is \((3, 6, 2)\).
The distance \(d\) from the point \((7, 8, 9)\) to \((3, 6, 2)\) is:
\[ d = \sqrt{(7 - 3)^2 + (8 - 6)^2 + (9 - 2)^2} = \sqrt{16 + 4 + 49} = \sqrt{69} \] Therefore,
\[ d^2 + 6 = 69 + 6 = 75 \]
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).