Let the foci of a hyperbola $ H $ coincide with the foci of the ellipse $ E : \frac{(x - 1)^2}{100} + \frac{(y - 1)^2}{75} = 1 $ and the eccentricity of the hyperbola $ H $ be the reciprocal of the eccentricity of the ellipse $ E $. If the length of the transverse axis of $ H $ is $ \alpha $ and the length of its conjugate axis is $ \beta $, then $ 3\alpha^2 + 2\beta^2 $ is equal to:
When \( |x| < 2 \), the coefficient of \( x^2 \) in the power series expansion of
\[ \frac{x}{(x-2)(x-3)} \]
is:
Let $E_1$ and $E_2$ be two independent events of a random experiment such that$P(E_1) = \frac{1}{2}, \quad P(E_1 \cup E_2) = \frac{2}{3}$.Then match the items of List-I with the items of List-II:
The correct match is:
Given that $ A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} $, matrix $ A $ is:
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $
Consider the following Linear Programming Problem $ P $: Minimize $ x_1 + 2x_2 $, subject to $ 2x_1 + x_2 \leq 2 $, $ x_1 + x_2 = 1 $, $ x_1, x_2 \geq 0 $. The optimal value of the problem $ P $ is equal to:
Let $D = \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ and } y > 0\}$. If the following second-order linear partial differential equation $y^2 \frac{\partial^2 u}{\partial x^2} - x^2 \frac{\partial^2 u}{\partial y^2} + y \frac{\partial u}{\partial y} = 0$ on $D$ is transformed to $\left( \frac{\partial^2 u}{\partial \eta^2} - \frac{\partial^2 u}{\partial \xi^2} \right) + \left( \frac{\partial u}{\partial \eta} + \frac{\partial u}{\partial \xi} \right) \frac{1}{2\eta} + \left( \frac{\partial u}{\partial \eta} - \frac{\partial u}{\partial \xi} \right) \frac{1}{2\xi} = 0$ on $D$, for some $a, b \in \mathbb{R}$, via the coordinate transform $\eta = \frac{x^2}{2}$ and $\xi = \frac{y^2}{2}$, then which one of the following is correct?
Consider the following limit: $ \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{0}^{\infty} e^{-x / \epsilon} \left( \cos(3x) + x^2 + \sqrt{x + 4} \right) dx. $ Which one of the following is correct?
$ \lim_{x \to -\frac{3}{2}} \frac{(4x^2 - 6x)(4x^2 + 6x + 9)}{\sqrt{2x - \sqrt{3}}} $
The value of $\frac{1 \times 2^2 + 2 \times 3^2 + \dots + 100 \times (101)^2}{1^2 \times 2 + 2^2 \times 3 + \dots + 100^2 \times 101}$ is: