If l, m, n are the pth, qth and rth terms of a G.P. respectively and l, m, n > 0, then
\[ \begin{vmatrix} \log_l p & 1 \\ \log_m q & 1 \\ \log_n r & 1 \end{vmatrix} \]
If \( \sqrt{5} - i\sqrt{15} = r(\cos\theta + i\sin\theta), -\pi < \theta < \pi, \) then
\[ r^2(\sec\theta + 3\csc^2\theta) = \]
Evaluate the integral: \[ \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{dx}{\sec^2 x + (\tan^{2022} x - 1)(\sec^2 x - 1)} \]