1. The determinant given is:
\[\begin{vmatrix} a_1 + b_1x & a_1x + b_1 & c_1 \\ a_2 + b_2x & a_2x + b_2 & c_2 \\ a_3 + b_3x & a_3x + b_3 & c_3 \end{vmatrix}\]
2. Use the property of determinants: - Subtract column 2 from column 1:
\[C_1 \rightarrow C_1 - C_2.\]
3. The determinant simplifies to:
\[\begin{vmatrix} b_1(x - 1) & a_1x + b_1 & c_1 \\ b_2(x - 1) & a_2x + b_2 & c_2 \\ b_3(x - 1) & a_3x + b_3 & c_3 \end{vmatrix}\]
4. Factorize \((x - 1)\) from column 1:
\[(x - 1) \cdot \begin{vmatrix} b_1 & a_1x + b_1 & c_1 \\ b_2 & a_2x + b_2 & c_2 \\ b_3 & a_3x + b_3 & c_3 \end{vmatrix}.\]
5. For the determinant to be zero, either:
\(-x + 1 = 0 \implies x = 1\), or
The remaining determinant is zero.
6. Since \(x = 1\) satisfies the condition, the correct answer is \(x = 1\).
A beam of light of wavelength \(\lambda\) falls on a metal having work function \(\phi\) placed in a magnetic field \(B\). The most energetic electrons, perpendicular to the field, are bent in circular arcs of radius \(R\). If the experiment is performed for different values of \(\lambda\), then the \(B^2 \, \text{vs} \, \frac{1}{\lambda}\) graph will look like (keeping all other quantities constant).