1. The determinant given is:
\[\begin{vmatrix} a_1 + b_1x & a_1x + b_1 & c_1 \\ a_2 + b_2x & a_2x + b_2 & c_2 \\ a_3 + b_3x & a_3x + b_3 & c_3 \end{vmatrix}\]
2. Use the property of determinants: - Subtract column 2 from column 1:
\[C_1 \rightarrow C_1 - C_2.\]
3. The determinant simplifies to:
\[\begin{vmatrix} b_1(x - 1) & a_1x + b_1 & c_1 \\ b_2(x - 1) & a_2x + b_2 & c_2 \\ b_3(x - 1) & a_3x + b_3 & c_3 \end{vmatrix}\]
4. Factorize \((x - 1)\) from column 1:
\[(x - 1) \cdot \begin{vmatrix} b_1 & a_1x + b_1 & c_1 \\ b_2 & a_2x + b_2 & c_2 \\ b_3 & a_3x + b_3 & c_3 \end{vmatrix}.\]
5. For the determinant to be zero, either:
\(-x + 1 = 0 \implies x = 1\), or
The remaining determinant is zero.
6. Since \(x = 1\) satisfies the condition, the correct answer is \(x = 1\).
Match List-I with List-II
List-I (Matrix) | List-II (Inverse of the Matrix) |
---|---|
(A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
(B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
(C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
(D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |
A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of: