>
Exams
>
Mathematics
>
Determinant
>
given that a 1 frac17 beginbmatrix 2 1 3 2 endbmat
Question:
Given that $ A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} $, matrix $ A $ is:
Show Hint
To find \( A \) from \( A^-1 \), multiply the inverse by the scalar reciprocal.
CBSE CLASS XII - 2024
CBSE CLASS XII
Updated On:
Apr 11, 2025
\[ 7 \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} \]
\[ \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} \]
\[ \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} \]
\[ \frac{1}{49} \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} \]
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Given that \( A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} \), we need to find matrix \( A \).
The inverse of a \( 2 \times 2 \) matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by: \[ A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] Applying this to \( A^{-1} \): \[ A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} \] The determinant of \( A^{-1} \) is: \[ \det(A^{-1}) = \left(\frac{1}{7}\right)^2 (2 \cdot 2 - 1 \cdot (-3)) = \frac{1}{49} (4 + 3) = \frac{7}{49} = \frac{1}{7} \] Now, the inverse of \( A^{-1} \) (which is \( A \)) is: \[ A = \frac{1}{\det(A^{-1})} \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} = 7 \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} \] Therefore, the correct answer is: \[ \boxed{A = 7 \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Determinant
If \( A = \begin{bmatrix} -2 & 0 & 0 \\ 1 & 2 & 3 \\ 5 & 1 & -1 \end{bmatrix} \), then the value of \( |A \cdot \text{adj}(A)| \) is:
CBSE CLASS XII - 2024
Mathematics
Determinant
View Solution
\( x \log x \frac{dy}{dx} + y = 2 \log x \) is an example of a:
CBSE CLASS XII - 2024
Mathematics
Determinant
View Solution
If
\[ \begin{bmatrix} 1 & 3 & 1 \\ k & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \]
has a determinant of \( \pm 6 \), then the value of \( k \) is:
CBSE CLASS XII - 2024
Mathematics
Determinant
View Solution
There are two values of a for which the determinant,
\(\Delta =\begin{bmatrix}1& -2& 5\\[0.3em]0& a& 1\\[0.3em] 0& 4& 2a\\[0.3em] \end{bmatrix} = 86\)
, then the sum of these values of a is:
CUET (UG) - 2023
Mathematics
Determinant
View Solution
If, A =
\(\begin{bmatrix}a& d& l\\[0.3em]b& e& m\\[0.3em]c& f& n\\[0.3em] \end{bmatrix}\)
and B =
\(\begin{bmatrix}l& m& n\\[0.3em]a& b& c\\[0.3em]d& e& f\\[0.3em] \end{bmatrix}\)
, then
CUET (UG) - 2023
Mathematics
Determinant
View Solution
View More Questions
Questions Asked in CBSE CLASS XII exam
Suppose, the value of Average Propensity to Consume (APC) is 0.8 and National Income is ₹ 4,000 crores, the value of saving would be ₹ ____ crores. (Choose the correct option to fill up the blank)
CBSE CLASS XII - 2025
Income and Employment
View Solution
A parallel plate capacitor has plate area \( A \) and plate separation \( d \). Half of the space between the plates is filled with a material of dielectric constant \( K \) in two ways as shown in the figure. Find the values of the capacitance of the capacitors in the two cases.
CBSE CLASS XII - 2025
Combination of capacitors
View Solution
Let \( 2x + 5y - 1 = 0 \) and \( 3x + 2y - 7 = 0 \) represent the equations of two lines on which the ants are moving on the ground. Using matrix method, find a point common to the paths of the ants.
CBSE CLASS XII - 2025
Linear Equations
View Solution
If \( \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0 \), \( |\overrightarrow{a}| = \sqrt{37} \), \( |\overrightarrow{b}| = 3 \), and \( |\overrightarrow{c}| = 4 \), then the angle between \( \overrightarrow{b} \) and \( \overrightarrow{c} \) is:
CBSE CLASS XII - 2025
Vectors
View Solution
An invitation had been issued by Leena/Lokesh Kapoor, the HR Head of your company, inviting you to a workshop on diversity and inclusion. As Rajni/Rakesh Sharma, senior analyst, draft a reply in not more than 50 words, consenting to attend.
CBSE CLASS XII - 2025
Invitation Card
View Solution
View More Questions