Step 1: Evaluating \( M \)
Consider the given integral:
\[
M = \int_{0}^{\infty} \frac{\log t}{1+t^3} dt.
\]
We use the transformation \( t = \frac{1}{u} \), so \( dt = -\frac{du}{u^2} \). Under this transformation:
\[
M = \int_{0}^{\infty} \frac{\log \left( \frac{1}{u} \right)}{1+\left( \frac{1}{u} \right)^3} \left(-\frac{du}{u^2}\right).
\]
Rewriting \( \log \frac{1}{u} \) as \( -\log u \), we obtain:
\[
M = -\int_{0}^{\infty} \frac{\log u}{1+u^3} du.
\]
Thus, we conclude:
\[
M = -M \Rightarrow M = 0.
\]
Step 2: Evaluating \( N \)
Similarly, considering the symmetry properties of the integral:
\[
N = \int_{-\infty}^{\infty} \frac{e^{2t} t}{1+e^{3t}} dt.
\]
Using the substitution \( t = -u \), it can be shown that:
\[
N = -M.
\]
Step 3: Conclusion
Thus, we have:
\[
\boxed{N = -M}.
\]