Step 1: Find \( P(E_2) \)
Using the formula for the union of two independent events:
\[
P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2).
\]
Substituting given values:
\[
\frac{2}{3} = \frac{1}{2} + P(E_2) - P(E_1) P(E_2).
\]
Since \( E_1 \) and \( E_2 \) are independent:
\[
P(E_1 \cap E_2) = P(E_1) P(E_2).
\]
\[
\frac{2}{3} = \frac{1}{2} + P(E_2) - \frac{1}{2} P(E_2).
\]
Solving for \( P(E_2) \):
\[
P(E_2) = \frac{1}{3}.
\]
Step 2: Compute conditional probabilities
\[
P(E_1/E_2) = \frac{P(E_1 \cap E_2)}{P(E_2)} = \frac{\frac{1}{2} \times \frac{1}{3}}{\frac{1}{3}} = \frac{1}{2}.
\]
\[
P(E_2/E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)} = \frac{\frac{1}{2} \times \frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}.
\]
\[
P(E_1 \cap E_2) = P(E_1) P(E_2) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}.
\]
Step 3: Conclusion
\[
\boxed{A \to iii, B \to i, C \to v, D \to ii.}
\]