Step 1: Differentiate Each Term
The derivative of \( \tan^{-1} f(x) \) is given by:
\[
\frac{d}{dx} \tan^{-1} f(x) = \frac{f'(x)}{1 + f(x)^2}.
\]
For each term in \( y \):
1. \( y_1 = \tan^{-1} \frac{x}{1+2x^2} \), let \( f(x) = \frac{x}{1+2x^2} \),
2. \( y_2 = \tan^{-1} \frac{x}{1+6x^2} \), let \( g(x) = \frac{x}{1+6x^2} \),
3. \( y_3 = \tan^{-1} \frac{x}{1+12x^2} \), let \( h(x) = \frac{x}{1+12x^2} \).
Step 2: Compute Derivatives
Using quotient rule:
\[
f'(x) = \frac{(1+2x^2)(1) - x(4x)}{(1+2x^2)^2} = \frac{1+2x^2 - 4x^2}{(1+2x^2)^2} = \frac{1-2x^2}{(1+2x^2)^2}.
\]
Similarly,
\[
g'(x) = \frac{1 - 6x^2}{(1+6x^2)^2}, \quad h'(x) = \frac{1 - 12x^2}{(1+12x^2)^2}.
\]
Step 3: Compute \( \frac{dy}{dx} \)
\[
\frac{dy}{dx} = \frac{f'(x)}{1+f(x)^2} + \frac{g'(x)}{1+g(x)^2} + \frac{h'(x)}{1+h(x)^2}.
\]
Substituting \( x = \frac{1}{2} \):
\[
\left(\frac{dy}{dx}\right)_{x=\frac{1}{2}} = 0.
\]
Step 4: Conclusion
Thus, the correct answer is:
\[
\mathbf{0}.
\]