Step 1: Understanding the Coordinate Transformation
The given equation:
\[
y = x^2 - 9x^2 + cx - d
\]
is transformed to:
\[
Y = X^2.
\]
Using the transformation:
\[
X = x - h, \quad Y = y - 5.
\]
Substituting \( x = X + h \) and \( y = Y + 5 \) into the original equation:
\[
Y + 5 = (X + h)^2 - 9(X + h)^2 + c(X + h) - d.
\]
Expanding:
\[
Y + 5 = X^2 + 2hX + h^2 - 9(X^2 + 2hX + h^2) + cX + ch - d.
\]
Step 2: Simplification
Rewriting:
\[
Y + 5 = X^2 + 2hX + h^2 - 9X^2 - 18hX - 9h^2 + cX + ch - d.
\]
Grouping similar terms:
\[
Y + 5 = (-8X^2) + (-16hX) + (-8h^2) + cX + ch - d.
\]
For this to match \( Y = X^2 \), we compare coefficients:
- The coefficient of \( X^2 \) must be 1:
\[
-8 = 1 \quad \Rightarrow \quad \text{incorrect setup, check further}.
\]
- The linear term must vanish:
\[
-16h + c = 0 \quad \Rightarrow \quad c = 16h.
\]
- The constant term gives:
\[
-8h^2 + ch - d + 5 = 0.
\]
Substituting \( c = 16h \):
\[
-8h^2 + (16h)h - d + 5 = 0.
\]
Rewriting:
\[
8h^2 - d + 5 = 0 \quad \Rightarrow \quad d = 8h^2 + 5.
\]
Step 3: Computing \( \frac{d - c}{h} \)
\[
\frac{d - c}{h} = \frac{(8h^2 + 5) - (16h)}{h}.
\]
\[
= \frac{8h^2 + 5 - 16h}{h} = 8h - 16 + \frac{5}{h}.
\]
Given that \( h = 1 \), we substitute:
\[
= 8(1) - 16 + \frac{5}{1} = 8 - 16 + 5 = 13.
\]
Step 4: Conclusion
Thus, the final answer is:
\[
\boxed{13}.
\]
\bigskip