Let $D = \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ and } y > 0\}$. If the following second-order linear partial differential equation
$y^2 \frac{\partial^2 u}{\partial x^2} - x^2 \frac{\partial^2 u}{\partial y^2} + y \frac{\partial u}{\partial y} = 0$ on $D$
is transformed to
$\left( \frac{\partial^2 u}{\partial \eta^2} - \frac{\partial^2 u}{\partial \xi^2} \right) + \left( \frac{\partial u}{\partial \eta} + \frac{\partial u}{\partial \xi} \right) \frac{1}{2\eta} + \left( \frac{\partial u}{\partial \eta} - \frac{\partial u}{\partial \xi} \right) \frac{1}{2\xi} = 0$ on $D$,
for some $a, b \in \mathbb{R}$, via the coordinate transform $\eta = \frac{x^2}{2}$ and $\xi = \frac{y^2}{2}$, then which one of the following is correct?
Consider the following Linear Programming Problem $ P $: Minimize $ x_1 + 2x_2 $, subject to
$ 2x_1 + x_2 \leq 2 $,
$ x_1 + x_2 = 1 $,
$ x_1, x_2 \geq 0 $.
The optimal value of the problem $ P $ is equal to:
Let \( p_1<p_2 \) be the two fixed points of the function \( g(x) = e^x - 2 \), where \( x \in {R} \). For \( x_0 \in {R} \), let the sequence \( (x_n)_{n \geq 1} \) be generated by the fixed-point iteration \[ x_n = g(x_{n-1}), \quad n \geq 1. \] Which one of the following is/are correct?
Consider the relationships among P, Q, R, S, and T:
• P is the brother of Q.
• S is the daughter of Q.
• T is the sister of S.
• R is the mother of Q.
The following statements are made based on the relationships given above.
(1) R is the grandmother of S.
(2) P is the uncle of S and T.
(3) R has only one son.
(4) Q has only one daughter.
Which one of the following options is correct?
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).
Ravi had _________ younger brother who taught at _________ university. He was widely regarded as _________ honorable man.
Select the option with the correct sequence of articles to fill in the blanks.