$ \lim_{x \to -\frac{3}{2}} \frac{(4x^2 - 6x)(4x^2 + 6x + 9)}{\sqrt{2x - \sqrt{3}}} $
\(\frac{3\sqrt{14}}{2}\)
- First, factorize the quadratic expressions in the numerator if possible to simplify the expression.
- Substitute \(x = -\frac{3}{2}\) in the simplified equation and check the value of the denominator, as \(x\) approaches \(-\frac{3}{2}\), to determine the behavior of the function.
- If the function presents an indeterminate form like \( \frac{0}{0} \), apply L'Hôpital's Rule or algebraic manipulation to resolve the indeterminacy.
- Finally, evaluate the limit to find the exact value.
Observe the following data given in the table. (\(K_H\) = Henry's law constant)
| Gas | CO₂ | Ar | HCHO | CH₄ |
|---|---|---|---|---|
| \(K_H\) (k bar at 298 K) | 1.67 | 40.3 | \(1.83 \times 10^{-5}\) | 0.413 |
The correct order of their solubility in water is
For a first order decomposition of a certain reaction, rate constant is given by the equation
\(\log k(s⁻¹) = 7.14 - \frac{1 \times 10^4 K}{T}\). The activation energy of the reaction (in kJ mol⁻¹) is (\(R = 8.3 J K⁻¹ mol⁻¹\))
Note: The provided value for R is 8.3. We will use the more precise value R=8.314 J K⁻¹ mol⁻¹ for accuracy, as is standard.