We can use partial fractions to decompose the expression:
\[\frac{x}{(x-2)(x-3)} = \frac{A}{x-2} + \frac{B}{x-3}\]
\[x = A(x-3) + B(x-2)\]
Let \(x = 2\):
\[2 = A(2-3) + B(2-2)\]
\[2 = -A \implies A = -2\]
Let \(x = 3\):
\[3 = A(3-3) + B(3-2)\]
\[3 = B\]
So,
\[\frac{x}{(x-2)(x-3)} = \frac{-2}{x-2} + \frac{3}{x-3}\]
\[= \frac{2}{2-x} - \frac{3}{3-x}\]
\[= \frac{2}{2(1-\frac{x}{2})} - \frac{3}{3(1-\frac{x}{3})}\]
\[= \frac{1}{1-\frac{x}{2}} - \frac{1}{1-\frac{x}{3}}\]
Since \(|x|<2\), we have \(\left|\frac{x}{2}\right|<1\) and \(\left|\frac{x}{3}\right|<1\). We can use the geometric series expansion:
\[\frac{1}{1-r} = 1 + r + r^2 + r^3 + \dots\]
Thus,
\[\frac{1}{1-\frac{x}{2}} = 1 + \frac{x}{2} + \left(\frac{x}{2}\right)^2 + \left(\frac{x}{2}\right)^3 + \dots\]
\[\frac{1}{1-\frac{x}{3}} = 1 + \frac{x}{3} + \left(\frac{x}{3}\right)^2 + \left(\frac{x}{3}\right)^3 + \dots\]
So,
\[\frac{x}{(x-2)(x-3)} = \left(1 + \frac{x}{2} + \frac{x^2}{4} + \dots\right) - \left(1 + \frac{x}{3} + \frac{x^2}{9} + \dots\right)\]
\[= \left(\frac{1}{2} - \frac{1}{3}\right)x + \left(\frac{1}{4} - \frac{1}{9}\right)x^2 + \dots\]
\[= \left(\frac{3-2}{6}\right)x + \left(\frac{9-4}{36}\right)x^2 + \dots\]
\[= \frac{1}{6}x + \frac{5}{36}x^2 + \dots\]
The coefficient of \(x^2\) is \(\frac{5}{36}\).
Final Answer: The final answer is $\boxed{(2)}$