The value of $\frac{1 \times 2^2 + 2 \times 3^2 + \dots + 100 \times (101)^2}{1^2 \times 2 + 2^2 \times 3 + \dots + 100^2 \times 101}$ is:
We are asked to evaluate the expression:
\[ \frac{1 \times 2^2 + 2 \times 3^2 + \cdots + 100 \times (101)^2}{1^2 \times 2^2 + 2^2 \times 3^2 + \cdots + 100^2 \times 101}. \]
This can be rewritten as:
\[ \frac{\sum_{r=1}^{100} r(r+1)^2}{\sum_{r=1}^{100} r^2(r+1)}. \]
Now, expand both the numerator and denominator:
Numerator: \[ \sum_{r=1}^{100} r(r+1)^2 = \sum_{r=1}^{100} r(r^2 + 2r + 1) = \sum_{r=1}^{100} (r^3 + 2r^2 + r). \] Denominator: \[ \sum_{r=1}^{100} r^2(r+1) = \sum_{r=1}^{100} (r^3 + r^2). \]
We now need to compute these sums:
\[ \sum_{r=1}^{100} r^3 = \left(\frac{100(100+1)}{2}\right)^2 = 25502500. \] \[ \sum_{r=1}^{100} r^2 = \frac{100(100+1)(2 \times 100+1)}{6} = 338350. \]
Using these values, we can calculate:
Numerator: \[ 25502500 + 2 \times 338350 + 5050 = 51851000. \] Denominator: \[ 25502500 + 338350 = 25840850. \]
Thus, the value of the expression is:
\[ \frac{51851000}{25840850} = \frac{305}{301}. \]
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to:
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.
In the light of the above statements, choose the most appropriate answer from the options given below: