Question:

The value of \[ \frac{1 \times 2^2 + 2 \times 3^2 + \dots + 100 \times (101)^2}{1^2 \times 2 + 2^2 \times 3 + \dots + 100^2 \times 101} \] is:

Updated On: Nov 24, 2024
  • \( \frac{306}{305} \)
  • \( \frac{305}{301} \)
  • \( \frac{32}{31} \)
  • \( \frac{31}{30} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are asked to evaluate the expression:

\[ \frac{1 \times 2^2 + 2 \times 3^2 + \cdots + 100 \times (101)^2}{1^2 \times 2^2 + 2^2 \times 3^2 + \cdots + 100^2 \times 101}. \]

This can be rewritten as:

\[ \frac{\sum_{r=1}^{100} r(r+1)^2}{\sum_{r=1}^{100} r^2(r+1)}. \]

Now, expand both the numerator and denominator:

Numerator: \[ \sum_{r=1}^{100} r(r+1)^2 = \sum_{r=1}^{100} r(r^2 + 2r + 1) = \sum_{r=1}^{100} (r^3 + 2r^2 + r). \] Denominator: \[ \sum_{r=1}^{100} r^2(r+1) = \sum_{r=1}^{100} (r^3 + r^2). \]

We now need to compute these sums:

\[ \sum_{r=1}^{100} r^3 = \left(\frac{100(100+1)}{2}\right)^2 = 25502500. \] \[ \sum_{r=1}^{100} r^2 = \frac{100(100+1)(2 \times 100+1)}{6} = 338350. \]

Using these values, we can calculate:

Numerator: \[ 25502500 + 2 \times 338350 + 5050 = 51851000. \] Denominator: \[ 25502500 + 338350 = 25840850. \]

Thus, the value of the expression is:

\[ \frac{51851000}{25840850} = \frac{305}{301}. \]

Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions