The value of $\frac{1 \times 2^2 + 2 \times 3^2 + \dots + 100 \times (101)^2}{1^2 \times 2 + 2^2 \times 3 + \dots + 100^2 \times 101}$ is:
We are asked to evaluate the expression:
\[ \frac{1 \times 2^2 + 2 \times 3^2 + \cdots + 100 \times (101)^2}{1^2 \times 2^2 + 2^2 \times 3^2 + \cdots + 100^2 \times 101}. \]
This can be rewritten as:
\[ \frac{\sum_{r=1}^{100} r(r+1)^2}{\sum_{r=1}^{100} r^2(r+1)}. \]
Now, expand both the numerator and denominator:
Numerator: \[ \sum_{r=1}^{100} r(r+1)^2 = \sum_{r=1}^{100} r(r^2 + 2r + 1) = \sum_{r=1}^{100} (r^3 + 2r^2 + r). \] Denominator: \[ \sum_{r=1}^{100} r^2(r+1) = \sum_{r=1}^{100} (r^3 + r^2). \]
We now need to compute these sums:
\[ \sum_{r=1}^{100} r^3 = \left(\frac{100(100+1)}{2}\right)^2 = 25502500. \] \[ \sum_{r=1}^{100} r^2 = \frac{100(100+1)(2 \times 100+1)}{6} = 338350. \]
Using these values, we can calculate:
Numerator: \[ 25502500 + 2 \times 338350 + 5050 = 51851000. \] Denominator: \[ 25502500 + 338350 = 25840850. \]
Thus, the value of the expression is:
\[ \frac{51851000}{25840850} = \frac{305}{301}. \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.