Let the foci of a hyperbola $ H $ coincide with the foci of the ellipse $ E : \frac{(x - 1)^2}{100} + \frac{(y - 1)^2}{75} = 1 $ and the eccentricity of the hyperbola $ H $ be the reciprocal of the eccentricity of the ellipse $ E $. If the length of the transverse axis of $ H $ is $ \alpha $ and the length of its conjugate axis is $ \beta $, then $ 3\alpha^2 + 2\beta^2 $ is equal to:
We are given an ellipse with the following properties:
\[ e_1 = \sqrt{1 - \frac{75}{100}} = \sqrt{\frac{5}{10}} = \frac{1}{2} \]
\(e_2 = 2\)
The foci are \(F_1(6, 1)\) and \(F_2(-4, 1)\).
We proceed with the following steps:
\[ 2ae_2 = 10 \implies a = \frac{5}{2} \]
\(\alpha = 5\)
\[ 4 = 1 + \frac{b^2}{a^2} \implies b^2 = 3a^2 \implies b = \sqrt{3} \times \frac{5}{2} \]
Thus,
\[ \beta = 5\sqrt{3} \]
\[ 3\alpha^2 + 2\beta^2 = 3 \times 25 + 2 \times 25 \times 3 = 225 \]
Thus, the area is 225.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: