>
KEAM
>
Mathematics
List of top Mathematics Questions asked in KEAM
If the standard deviation of
$3$
,
$8$
,
$6$
,
$10$
,
$12$
,
$9$
,
$11$
,
$10$
,
$12$
,
$7$
is
$2.71$
, then the standard deviation of
$30$
,
$80$
,
$60$
,
$100$
,
$120$
,
$90$
,
$110$
,
$100$
,
$120$
,
$70$
is
KEAM
Mathematics
Statistics
Standard deviation of first
$n$
odd natural numbers is
KEAM
Mathematics
Variance and Standard Deviation
If
$ y={{\sin }^{-1}}(3x-4{{x}^{3}})+{{\cos }^{-1}}(4{{x}^{3}}-3x) $
$ +{{\tan }^{-1}}(e), $
then
$ \frac{dy}{dx} $
is equal to
KEAM
Mathematics
Differentiability
The
$A$
.
$M$
. of
$9$
terms is
$15$
. If one more term is added to this series, then the
$A$
.
$M$
. becomes
$16$
. The value of the added term is
KEAM
Mathematics
Statistics
The argument of the complex number
$ \left( \frac{i}{2}-\frac{2}{i} \right) $
is equal to
KEAM
Mathematics
Quadratic Equations
The locus of a point which is equidistant from the points
$(1,1)$
and
$(3, 3)$
is
KEAM
Mathematics
Straight lines
Let
$ \alpha $
and
$ \beta $
be the roots of
$ a{{x}^{2}}+bx+c=0 $
. Then,
$ \underset{x\to \alpha }{\mathop{\lim }}\,\frac{1-\cos (a{{x}^{2}}+bx+c)}{{{(x-\alpha )}^{2}}} $
is equal to
KEAM
Mathematics
Derivatives
If
$ \sqrt{x+iy}=\pm (a+ib), $
then
$ \sqrt{-x-iy} $
is equal to
KEAM
Mathematics
complex numbers
The slope of the normal to the curve
$x=t^{2}+3t-8, y=2t^{2}-2t-5$
at the point
$(2,-1)$
is
KEAM
Mathematics
Application of derivatives
If
$ x $
satisfies the in equations
$ 2x-7<11 $
, $ 3x+4
KEAM
Mathematics
linear inequalities
The angle between the straight lines
$x-1=\frac{2y+3}{3}=\frac{z+5}{2}$
and
$x-3r+2; y=-2r-1; z=2,$
where
$r$
is a parameter, is
KEAM
Mathematics
Three Dimensional Geometry
If the mean of the numbers
$a, b, 8,5,10$
is
$6$
and their variance is
$6.8$
, then
$ab$
is equal to
KEAM
Mathematics
Statistics
The value of
\(\frac{1}{8}(3-4\text{ }cos\text{ }2\theta +cos\text{ }4\theta )\)
is
KEAM
Mathematics
Trigonometric Functions
If
$ y={{\tan }^{-1}}\left( \frac{\cos x}{1+\sin x} \right), $
then
$ \frac{dy}{dx} $
is equal to
KEAM
Mathematics
Differentiability
If the distance between the two points
$(-1, a )$
and
$(-1, -4a )$
is
$10$
units, then the values of
$a$
are
KEAM
Mathematics
Straight lines
The area of the triangle formed by the points
$(2, 2), (5, 5), (6, 7)$
is equal to (in square units)
KEAM
Mathematics
Straight lines
Let
$p : 57$
is an odd prime number,
$\quad \, q : 4$
is a divisor of
$12$
$\quad$
$r : 15$
is the
$LCM$
of
$3$
and
$5$
Be three simple logical statements. Which one of the following is true?
KEAM
Mathematics
mathematical reasoning
If the mean of six numbers is
$41$
, then the sum of these numbers is
KEAM
Mathematics
Statistics
The value of
$\displaystyle \lim_{y \to \infty} \left[y \, sin \left(\frac{1}{y}\right) - \frac{1}{y} \right]$
is equal to
KEAM
Mathematics
Derivatives
The number of words that can be formed by using all the letters of the word
$PROBLEM$
only one is
KEAM
Mathematics
permutations and combinations
If
$ n=5, $
then
$ {{{{(}^{n}}{{C}_{0}})}^{2}}+{{{{(}^{n}}{{C}_{1}})}^{2}}+{{{{(}^{n}}{{C}_{2}})}^{2}}+..... $
$ +{{{{(}^{n}}{{C}_{5}})}^{2}} $
is equal to
KEAM
Mathematics
Binomial theorem
The angle between the line
$ \frac{3x-1}{3}=\frac{y+3}{-1} $
$ =\frac{5-2z}{4} $
and the plane
$ 3x-3y-6z=10 $
is equal to
KEAM
Mathematics
Angle between a Line and a Plane
If
$ \omega \ne 1 $
is a cube root of unity, then the value of
$ \left| \begin{matrix} 1+2{{\omega }^{100}}+{{\omega }^{200}} \\ 1 \\ \omega \\\end{matrix}\begin{matrix} {{\omega }^{2}} \\ 1+{{\omega }^{100}}+2{{\omega }^{200}} \\ {{\omega }^{2}} \\\end{matrix}\begin{matrix} 1 \\ \omega \\ 1+{{\omega }^{100}}+2{{\omega }^{200}} \\\end{matrix} \right| $
is equal to
KEAM
Mathematics
Determinants
If f(x)=
$ \left(\frac{x}{2}\right)^{10}, then\, f \left(1\right)+\frac{f '\left(1\right)}{\lfloor1}+\frac{f \left(1\right)}{\lfloor2}+\frac{f '\left(1\right)}{\lfloor3}+\ldots+\frac{f ^{\left(10\right)}\left(1\right)}{\lfloor10}$
is equal to
KEAM
Mathematics
Differentiability
The domain of the function
$f \left(x\right)=\frac{\log_{2}\left(x+3\right)}{x^{2}+3x+2}$
is
KEAM
Mathematics
Relations and functions
Prev
1
...
17
18
19
20
21
...
27
Next