>
KEAM
>
Mathematics
List of top Mathematics Questions asked in KEAM
Let
$\Delta= \begin{vmatrix}1&1&1\\ 1&-1-w^{2}&w^{2}\\ 1&w&w^{4}\end{vmatrix}$
, where
$w \neq 1$
is a complex number such that
$w^3 = 1$
. Then
$\Delta$
equals
KEAM
Mathematics
Determinants
If
$n\left(A\right)=43, n\left(B\right)=51\quad and \quad n\left(A\cup B\right)=75, then\quad n\left(A-B\right)\cup\left(B-A\right)$
is equal to
KEAM
Mathematics
Sets
If t
$_5$
, t
$_{10}$
and t
$_{25}$
are 5
$^{th}$
, 10
$^{th}$
, and 25
$^{th}$
terms of an A.P. respectively, then the value of
$\begin{vmatrix}t_{5}&t_{10}&t_{25}\\ 5&10&25\\ 1&1&1\end{vmatrix}$
is equal to
KEAM
Mathematics
Determinants
If
$\left(1+ax\right)^{n} =1+6x+\frac{27}{2}x^{2}+\cdots+a^{n}\, x^{n}$
, then the values of
$a$
and
$n$
are respectively
KEAM
Mathematics
Binomial theorem
If
$|x - 3| < 2x + 9$
then
$x$
lies in the interval
KEAM
Mathematics
linear inequalities
Let
$s_n = \cos \left(\frac{n\pi}{10}\right), n=1,2,3,\ldots$
Then the value of
$\frac{s_{1}s_{2}\ldots s_{10}}{s_{1}+s_{2}+\ldots+s_{10}}$
is equal to
KEAM
Mathematics
Trigonometric Functions
If
$cos x = -\frac{4}{5}$
, where
$x\in\left[0, \pi\right]$
, then the value of
$cos \left(\frac{x}{2}\right)$
is equal to
KEAM
Mathematics
Trigonometric Identities
If
$x=sin^{-1}\left(3t-4t^{3}\right)$
and
$y=cos^{-1}\left(\sqrt{1-t^{2}}\right)$
, then
$\frac{dy}{dx}$
is equal to
KEAM
Mathematics
Differentiability
If
$log_e\,5$
,
$log_e(5^x-1)$
and
$log_e$
$\left(5^{x}-\frac{11}{5}\right)$
are in
$A.P.$
, then the values of
$x$
are
KEAM
Mathematics
Sequence and series
If
$f(x) = \sqrt{2x} + \frac{4}{\sqrt{2x}}$
, then
$f'(2) $
is equal to
KEAM
Mathematics
Differentiability
If
$X=\{1,2,3, \ldots, 10\}$
and
$A=\{1,2,3,4,5\}$
. Then, the number of subsets
$B$
of
$X$
such that
$A-B=\{4\}$
is
KEAM
Mathematics
Sets
$\int_{0}^{1} \frac{1}{\left(x^{2}+16\right)\left(x^{2}+25\right)} \,dx$
is equal to
KEAM
Mathematics
Integrals of Some Particular Functions
Let
$a, b, c$
be in
$AP$
. If
$ 0 < a,b,c < 1 ,x=\sum\limits_{n=0}^{\infty }{{{a}^{n}}}, $
$ y=\sum\limits_{n=0}^{\infty }{{{b}^{n}}} $
and
$ z=\sum\limits_{n=0}^{\infty }{{{c}^{n}}}, $
then
KEAM
Mathematics
Sequence and series
If
$^{n}C_{r-1}=28$
,
$^{n}C_{r}=56$
and
$^{n}C_{r+1}=70$
, then the value of
$r$
is equal to
KEAM
Mathematics
permutations and combinations
If
$A = \begin{bmatrix}log\,x&-1\\ -log\,x&2\end{bmatrix}$
and if
$det (A) = 2$
, then the value of
$x$
is equal to
KEAM
Mathematics
Determinants
The remainder when
$2^{2016}$
is divided by
$63$
, is
KEAM
Mathematics
Binomial theorem
Let
$ A(1,-1,2) $
and
$ B(2,3,-1) $
be two points. If a point
$P$
divides
$AB$
internally in the ratio
$ 2:3, $
then the position vector of
$P$
is
KEAM
Mathematics
Vector Algebra
If
$f \left(z\right)=\frac{1-z^{3}}{1-z} ,$
where
$z=x+iy$
with
$z\ne1,$
then
$Re\left\{\overline{f \left(z\right)}\right\}=0$
reduces to
KEAM
Mathematics
Complex Numbers and Quadratic Equations
If
$ {{(\sqrt{5}+\sqrt{3}i)}^{33}}={{2}^{49}}z, $
then modulus of the complex number
$z$
is equal to
KEAM
Mathematics
Complex Numbers and Quadratic Equations
If
$r$
is a real number such that
$ |r| < 1 $
and if
$ a=5(1-r), $
then
KEAM
Mathematics
linear inequalities
The value of
$\frac{1}{i}+\frac{1}{i^{2}}+\frac{1}{i^{3}}+\cdots+\frac{1}{i^{102}}$
is
KEAM
Mathematics
Algebra of Complex Numbers
$\int\limits_{0}^{1} x e^{-5x} \, dx$
is equal to
KEAM
Mathematics
Integrals of Some Particular Functions
If
$ A=\left[ \begin{matrix} 1 & 2 \\ 3 & 5 \\ \end{matrix} \right], $
then the value of the determinant
$ |{{A}^{2009}}-5{{A}^{2008}}| $
is
KEAM
Mathematics
Determinants
The number of ways in which
$5$
ladies and
$7$
gentlemen can be seated in a round table so that no two ladies sit together, is
KEAM
Mathematics
Permutations
If
$ f(x)=(x-2)(x-4)(x-6)....(x-2n), $
then
$ f'(2) $
is
KEAM
Mathematics
limits and derivatives
Prev
1
...
15
16
17
18
19
...
27
Next