We are given:
\[
f(g(x)) = x^2 + 9
\]
Substituting \( g(x) = 4x + 3 \), we get:
\[
f(4x + 3) = x^2 + 9
\]
Replacing \( x \) in terms of \( g(x) \),
\[
x = \frac{g(x) - 3}{4}
\]
Thus,
\[
f(y) = \left( \frac{y - 3}{4} \right)^2 + 9
\]
Now, substituting \( y = 7 \):
\[
f(7) = \left( \frac{7 - 3}{4} \right)^2 + 9
\]
\[
= \left( \frac{4}{4} \right)^2 + 9
\]
\[
= 1 + 9 = 10
\]
Thus, the correct answer is (C).