Step 1: Substitute \( x = 6 \) Substituting directly: \[ \sqrt{6^2 + 13} - 7 = \sqrt{36 + 13} - 7 = \sqrt{49} - 7 = 7 - 7 = 0. \] \[ x^2 - 36 = 6^2 - 36 = 36 - 36 = 0. \] Since both numerator and denominator become zero, apply L'Hôpital's Rule.
Step 2: Differentiate numerator and denominator Differentiate the numerator: \[ \frac{d}{dx} \left( \sqrt{x^2 + 13} - 7 \right) = \frac{1}{2} \cdot \frac{2x}{\sqrt{x^2 + 13}} = \frac{x}{\sqrt{x^2 + 13}}. \] Differentiate the denominator: \[ \frac{d}{dx} (x^2 - 36) = 2x. \]
Step 3: Compute the limit \[ \lim\limits_{x \to 6} \frac{\frac{x}{\sqrt{x^2 + 13}}}{2x} = \lim\limits_{x \to 6} \frac{1}{2 \sqrt{x^2 + 13}}. \] Substituting \( x = 6 \): \[ \frac{1}{2 \sqrt{36 + 13}} = \frac{1}{2 \times 7} = \frac{1}{14}. \] Thus, the correct answer is: \[ \frac{1}{14}. \]
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: