>
KEAM
>
Mathematics
List of top Mathematics Questions asked in KEAM
If
$x=5+2$
sec
$\theta$
and
$y=5+2\, \tan \, \theta ,$
then
$\left(x-5\right)^{2}-\left(y-5\right)^{2}$
is equal to
KEAM
Mathematics
Properties of Inverse Trigonometric Functions
The order of the differential equation
$\left(\frac{d^{3}\, y }{dx^{3}}\right)^{2} + \left(\frac{d^{2}\,y}{dx}\right)^{2} + \left(\frac{dy}{dx}\right)^{5} = 0 $
is
KEAM
Mathematics
Differential equations
There are
$10$
persons including
$3$
ladies. A committee of
$4$
persons including at least one lady is to be formed. The number of ways of forming such a committee is
KEAM
Mathematics
permutations and combinations
Let
$O$
be the origin and
$A$
be the point
$(64, 0).$
If
$P$
,
$Q$
divide
$OA$
in the ratio
$1 : 2 : 3$
, then the point
$P$
is
KEAM
Mathematics
Straight lines
The total revenue in rupees received from the sale of x units of a product is given by
$ R(x)=13{{x}^{2}}+26x+15 $
. Then, the marginal revolution rupees, when
$ x=15 $
is
KEAM
Mathematics
Derivatives
If
$ \overrightarrow{a},\text{ }\overrightarrow{b},\text{ }\overrightarrow{c} $
are non-coplanar and
$ (\overrightarrow{a}+\lambda \overrightarrow{b}).[(\overrightarrow{b}+3\overrightarrow{c})\times (\overrightarrow{c}\times 4\overrightarrow{a})]=0, $
then the value of
$ \lambda $
is equal to
KEAM
Mathematics
Vector Algebra
The image of the interval [-1, 3] under the mapping
$f : R\rightarrow R$
given by
$f \left(x\right)=4x^{3}-12x$
is
KEAM
Mathematics
Binary operations
If
$ x={{\sin }^{-1}}(3t-4{{t}^{3}}) $
and
$ y={{\cos }^{-1}}(\sqrt{1-{{t}^{2}}}), $
then
$ \frac{dy}{dx} $
is equal to
KEAM
Mathematics
Derivatives
If
$A$
and
$B$
are square matrices of the same order and if
$A=A^{T},B=B^{T},$
then
$\left(ABA\right)^{T}=$
KEAM
Mathematics
Matrices
In the expansion of
$ {{(1+x+{{x}^{2}}+{{x}^{3}})}^{6}}, $
the coefficient of
$ {{x}^{14}} $
is
KEAM
Mathematics
Binomial theorem
If
$\begin{vmatrix}3i&-9i&1\\ 2&9i&-1\\ 10&9&i\end{vmatrix} = x + iy $
, then
KEAM
Mathematics
Determinants
The set
$\{(x, y) : x + y =1\}$
in the
$xy$
plane represents
KEAM
Mathematics
applications of integrals
If
$ l,m $
and
$ n $
are real numbers such that
$ {{l}^{2}}+{{m}^{2}} $
$ +{{n}^{2}}=0, $
then
$ \left| \begin{matrix} 1+{{l}^{2}} & lm & ln \\ lm & 1+{{m}^{2}} & mn \\ ln & mn & 1+{{n}^{2}} \\ \end{matrix} \right| $
is equal to
KEAM
Mathematics
Determinants
If the projection of the vector
$\vec {a}$
on
$\vec{b}$
is
$ \overrightarrow{a} $
on
$ \overrightarrow{b} $
is
$ |\overrightarrow{a}\times \overrightarrow{b}| $
and if
$ 3\overrightarrow{b}=\vec{i}+\vec{j}+\vec{k}, $
then the angle between
$ \vec{a} $
and
$ \vec{b} $
is
KEAM
Mathematics
Vector Algebra
The value of
$\frac{\sqrt{3}}{\sin15^{\circ}} - \frac{\sqrt{1}}{\cos15^{\circ}}$
is equal to
KEAM
Mathematics
Trigonometric Functions
If sin
$\left(\theta-\phi\right) = n \, sin (\theta - \phi),n \ne1,$
then the value of
$\frac{\tan\theta}{\tan\phi}$
is equal to
KEAM
Mathematics
Properties of Inverse Trigonometric Functions
The general solution of the differential equation
$(x + y + 3) \,\frac{dy}{dx}\, =\,1$
is
KEAM
Mathematics
Differential equations
If
$xy\, = \,A \,sinx \,+ \,B \,cos \,x$
is the solution of the differential equation
$x\frac{d^{2}y}{dx^{2}}-5a\frac{dy}{dx}+xy=0$
then the value of
$a$
is equal to
KEAM
Mathematics
Differential equations
Let
$A (6, -1), B (1, 3)$
and
$C (x, 8)$
be three points such that
$AB = BC$
. The values of
$x$
are
KEAM
Mathematics
Straight lines
The domain of the function
$f\left(x\right) = sin^{-1}\left(\frac{x+5}{2}\right)$
is
KEAM
Mathematics
Functions
In a certain town
$25\%$
families own a cell phone,
$15\%$
families own a scooter and
$65\%$
families own neither a cell phone nor a scooter. If
$1500$
families own both a cell phone and a scooter, then the total number of families in the town is
KEAM
Mathematics
Sets
If
$ y={{\sin }^{2}}{{\cot }^{-1}}\sqrt{\frac{1+x}{1-x}}, $
then
$ \frac{dy}{dx} $
is equal to
KEAM
Mathematics
Derivatives
The principal argument of the complex numb
$Z=\frac{1+\sin \frac{\pi}{3}+i \cos\frac{\pi}{3} }{1+\sin \frac{\pi}{3} - i \cos\frac{\pi}{3} }$
is
KEAM
Mathematics
complex numbers
If
$p :$
It is snowing,
$q :$
I am cold, then the compound statement "It is snowing and it is not that I am cold" is given by
KEAM
Mathematics
mathematical reasoning
The
$A$
.
$M$
. of
$9$
terms is
$15$
. If one more term is added to this series, then the
$A$
.
$M$
. becomes
$16$
. The value of the added term is
KEAM
Mathematics
Statistics
Prev
1
...
16
17
18
19
20
...
27
Next