Let \( R \) be the total radius of the ice-coated sphere and \( r \) be the radius of the original sphere. The volume of the sphere is given by:
\[
V = \frac{4}{3} \pi R^3
\]
Differentiating both sides with respect to time \( t \):
\[
\frac{dV}{dt} = 4\pi R^2 \frac{dR}{dt}
\]
Given:
\[
\frac{dV}{dt} = -80 { cm}^3/{min}, \quad r = 15 { cm}, \quad {thickness} = 5 { cm}
\]
Thus, total radius \( R \) is:
\[
R = 15 + 5 = 20 { cm}
\]
Substituting the values:
\[
-80 = 4\pi (20)^2 \frac{dR}{dt}
\]
\[
-80 = 1600\pi \frac{dR}{dt}
\]
\[
\frac{dR}{dt} = -\frac{80}{1600\pi} = -\frac{1}{20\pi}
\]
Thus, the rate of change of thickness is:
\[
\frac{1}{20\pi} { cm/min}
\]
Thus, the correct answer is (E).