If the function
\[
f(x) =
\begin{cases}
x^2, & \text{for } x < 4 \\
5x - k, & \text{for } x \geq 4
\end{cases}
\]
is continuous at \( x = 4 \), then the value of \( k \) is equal to
Show Hint
For a function to be continuous at \( x = a \), ensure that \( \lim\limits_{x \to a^-} f(x) = \lim\limits_{x \to a^+} f(x) = f(a) \).
For continuity at \( x = 4 \),
\[
\lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x) = f(4).
\]
From the left-hand limit,
\[
\lim_{x \to 4^-} f(x) = 4^2 = 16.
\]
From the right-hand limit,
\[
\lim_{x \to 4^+} f(x) = 5(4) - k = 20 - k.
\]
Equating both sides,
\[
16 = 20 - k.
\]
Solving for \( k \),
\[
k = 4.
\]
Thus, the correct answer is (C).