Differentiating \( f(x) \),
\[
f(x) = x^{\frac{2}{3}} + x^{\frac{1}{2}}.
\]
Applying differentiation,
\[
f'(x) = \frac{2}{3} x^{-\frac{1}{3}} + \frac{1}{2} x^{-\frac{1}{2}}.
\]
Evaluating at \( x = 64 \),
\[
f'(64) = \frac{2}{3} \cdot 64^{-\frac{1}{3}} + \frac{1}{2} \cdot 64^{-\frac{1}{2}}.
\]
Since \( 64^{\frac{1}{3}} = 4 \) and \( 64^{\frac{1}{2}} = 8 \),
\[
f'(64) = \frac{2}{3} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{8}.
\]
\[
= \frac{2}{12} + \frac{1}{16}.
\]
\[
= \frac{1}{6} + \frac{1}{16}.
\]
\[
= \frac{8}{48} + \frac{3}{48} = \frac{11}{48}.
\]
Thus, the correct answer is (A).