The equation of a circle:
\[
x^2 + y^2 + Dx + Ey + F = 0
\]
has center \( (-D/2, -E/2) \) and radius:
\[
r = \sqrt{\left( \frac{D}{2} \right)^2 + \left( \frac{E}{2} \right)^2 - F}
\]
Comparing:
\[
D = \alpha, \quad E = -8, \quad F = 56
\]
The radius is 3:
\[
\sqrt{\left( \frac{\alpha}{2} \right)^2 + \left( \frac{-8}{2} \right)^2 - 56} = 3
\]
\[
\left( \frac{\alpha}{2} \right)^2 + (-4)^2 - 56 = 9
\]
\[
\frac{\alpha^2}{4} + 16 - 56 = 9
\]
\[
\frac{\alpha^2}{4} - 40 = 9
\]
\[
\frac{\alpha^2}{4} = 49
\]
\[
\alpha^2 = 196
\]
\[
\alpha = \pm 14
\]
Final Answer:
\[
\boxed{14, -14}
\]