Rewriting the given integral:
\[
I = \int \frac{e^x}{2^x} dx.
\]
Since \( 2^x = e^{x \ln 2} \), we rewrite:
\[
I = \int e^x e^{-x \ln 2} dx = \int e^{x(1 - \ln 2)} dx.
\]
Integrating,
\[
I = \frac{e^{x(1 - \ln 2)}}{1 - \ln 2} + C.
\]
Thus, the correct answer is:
\[
\frac{e^x}{(1 - \log_2 2)2^x} + C.
\]