The direction cosines \( \alpha, \beta, \gamma \) satisfy the equation: \[ \alpha^2 + \beta^2 + \gamma^2 = 1 \] Substituting given values: \[ \left( \frac{-4}{\sqrt{105}} \right)^2 + \left( \frac{\sqrt{5}}{\sqrt{21}} \right)^2 + \gamma^2 = 1 \] Calculating each term: \[ \frac{16}{105} + \frac{5}{21} + \gamma^2 = 1 \] Converting \( \frac{5}{21} \) to denominator 105: \[ \frac{16}{105} + \frac{25}{105} + \gamma^2 = 1 \] \[ \frac{41}{105} + \gamma^2 = 1 \] \[ \gamma^2 = 1 - \frac{41}{105} \] \[ \gamma^2 = \frac{105}{105} - \frac{41}{105} = \frac{64}{105} \] \[ \gamma = \pm \frac{8}{\sqrt{105}} \] Since \( z<0 \), we take the negative value: \[ \gamma = \frac{-8}{\sqrt{105}} \]
Final Answer: \[ \boxed{\frac{-8}{\sqrt{105}}} \]
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.