Evaluate \[ \frac{\cosec^2(\theta) - 1}{\cosec^2(\theta)} - \frac{\sec^2(\theta) - 1}{\sec^2(\theta)} \]
We simplify each fraction separately: \[ \frac{\cosec^2(\theta) - 1}{\cosec^2(\theta)} = \frac{\frac{1}{\sin^2 \theta} - 1}{\frac{1}{\sin^2 \theta}} = \frac{\frac{1 - \sin^2 \theta}{\sin^2 \theta}}{\frac{1}{\sin^2 \theta}} = 1 - \sin^2 \theta = \cos^2 \theta \] Similarly, \[ \frac{\sec^2(\theta) - 1}{\sec^2(\theta)} = \frac{\frac{1}{\cos^2 \theta} - 1}{\frac{1}{\cos^2 \theta}} = \frac{\frac{1 - \cos^2 \theta}{\cos^2 \theta}}{\frac{1}{\cos^2 \theta}} = 1 - \cos^2 \theta = \sin^2 \theta \] Now, \[ \frac{\cos^2 \theta}{\sin^2 \theta} = \cot^2 \theta \] Using the identity: \[ \cot^2 \theta = \cos 2\theta \] Thus, the correct answer is \( \cos 2\theta \).
Final Answer: \[ \boxed{\cos 2\theta} \]
Let \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x}{1+5^x} \, dx \). Then: