Step 1: Differentiate \( f(x) \)
We apply the derivative of the natural logarithm function:
\[
\frac{d}{dx} \log_e (g(x)) = \frac{g'(x)}{g(x)}
\]
where \( g(x) = \frac{x^2 + 30}{11x} \).
First, differentiate the numerator and denominator separately:
\[
g(x) = \frac{x^2 + 30}{11x}
\]
Using quotient rule:
\[
g'(x) = \frac{(2x)(11x) - (x^2 + 30)(11)}{(11x)^2}
\]
Simplifying:
\[
g'(x) = \frac{22x^2 - 11(x^2 + 30)}{121x^2}
\]
\[
= \frac{22x^2 - 11x^2 - 330}{121x^2} = \frac{11x^2 - 330}{121x^2}
\]
Step 2: Solve \( f'(x) = 0 \)
Setting \( g'(x) = 0 \):
\[
11x^2 - 330 = 0
\]
Solving for \( x \):
\[
x^2 = 30
\]
\[
x = \sqrt{30}
\]
Since \( c \in (5,6) \), and \( \sqrt{30} \approx 5.477 \) falls within this interval, we confirm that \( c = \sqrt{30} \).