The total number of six digit numbers, formed using the digits 4,5,9 only and divisible by 6 , is __
Let the sixth term in the binomial expansion of \(({\sqrt{2}^{log_{2}}(10-3^{x})+\sqrt[5]{2^{(x-2)log_{2}{3}}}})^{m}\), in the increasing powers of \(2^{(x-2)log_{2}3}\), be 21 If the binomial coefficients of the second, third and fourth terms in the expansion are respectively the first, third and fifth terms of an AP, then the sum of the squares of all possible values of x is
Let \(\alpha x+\beta y+y z=1\) be the equation of a plane passing through the point\((3,-2,5)\)and perpendicular to the line joining the points \((1,2,3)\) and \((-2,3,5)\) Then the value of \(\alpha \beta y\)is equal to ____
If the term without \(x\) in the expansion of \(\left(x^{\frac{2}{3}}+\frac{\alpha}{x^3}\right)^{22}\)is 7315 , then \(|\alpha|\) is equal to ___
The sum of the common terms of the following three arithmetic progressions\(3,7,11,15, \ldots , 399\), \(2,5,8,11, \ldots , 359\)and \(2,7,12,17, \ldots , 197,\) is equal to _____
Number of integral solutions to the equation \(x+y+z=21\), where \(x \geq 1\), \(y \geq 3\), \(z \geq 4\), is equal to ___
If the x-intercept of a focal chord of the parabola \(y^2=8 x+4 y+4\) is 3 , then the length of this chord is equal to ___
The point of intersection \(C\) of the plane \(8 x+y+2 z=0\) and the line joining the points \(A (-3,-6,1)\) and \(B (2,4,-3)\)divides the line segment \(AB\) internally in the ratio\(k : 1 \ If a , b , c (| a |,| b |, | c |\)are coprime) are the direction ratios of the perpendicular from the point \(C\)on the line \(\frac{1-x}{1}=\frac{y+4}{2}=\frac{z+2}{3}\), then \(| a + b + c |\)is equal to ___
The number of integral values of \(k\), for which one root of the equation \[2x^2 - 8x + k = 0\] lies in the interval \((1, 2)\) and its other root lies in the interval \((2, 3)\), is: