The given integral is:
\( \int_{\frac{1}{3}}^3 \ln(x) dx = \int_{\frac{1}{3}}^1 \ln(x) dx + \int_1^3 \ln(x) dx. \)
For the first integral:
\( \int_{\frac{1}{3}}^1 \ln(x) dx = -[x \ln(x) - x]_{\frac{1}{3}}^1 = - \left[ - \frac{2}{3} + \ln \left( \frac{1}{3} \right) \right]. \)
For the second integral:
\( \int_1^3 \ln(x) dx = [x \ln(x) - x]_1^3 = \frac{8}{3} - \ln \left( \frac{9}{e} \right). \)
Combining both results:
\( \int_{\frac{1}{3}}^3 \ln(x) dx = \frac{4}{3} \ln(3) - \frac{8}{3} + 3 \ln(3) - 2. \)
Thus:
\( m=4, n=3 \implies m^2 + n^2 - 5 = 16 + 9 - 5 = 20. \)
For \( \alpha, \beta, \gamma \in \mathbb{R} \), if \[ \lim_{x \to 0} \frac{x^2 \sin(\alpha x) + (\gamma - 1)e^{x^2}}{\sin(2x - \beta x)} = 3, \] then \( \beta + \gamma - \alpha \) is equal to:
If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):

A function's limit is a number that a function reaches when its independent variable comes to a certain value. The value (say a) to which the function f(x) approaches casually as the independent variable x approaches casually a given value "A" denoted as f(x) = A.
If limx→a- f(x) is the expected value of f when x = a, given the values of ‘f’ near x to the left of ‘a’. This value is also called the left-hand limit of ‘f’ at a.
If limx→a+ f(x) is the expected value of f when x = a, given the values of ‘f’ near x to the right of ‘a’. This value is also called the right-hand limit of f(x) at a.
If the right-hand and left-hand limits concur, then it is referred to as a common value as the limit of f(x) at x = a and denote it by lim x→a f(x).