Let (a+bx+cxΒ²)10 = $ \sum_{i=0}^{20} $ pixi, a,b,cβN. If p1=20 and Pβ = 210, then 2(a+b+c) is equal to
Negation of \( p \land (q \land \neg (p \land q)) \) is:}
If the equation of the normal to the curve \( y = \frac{x - a}{(x + b)(x - 2)} \) at the point \( (1, -3) \) is \( x - 4y = 13 \), then the value of \( a + b \) is: