Given:
The terms \( a, ar, \) and \( ar^2 \) are in a geometric progression (GP).
\( a^2 + (ar)^2 + (ar^2)^2 = 33033 \)
\( a^2(1 + r^2 + r^4) = 33033 \)
\( 33033 = 11^2 \cdot 3 \cdot 7 \cdot 13 \implies a^2 = 11^2 \implies a = 11 \).
\( 1 + r^2 + r^4 = \frac{33033}{11^2} = 3 \cdot 7 \cdot 13 = 273 \).
\( r^2(1 + r^2) = 273 - 1 = 272 \).
\( r^2(r^2 + 1) = 16 \cdot 17 \).
\( r^2 = 16 \implies r = 4 \) (since \( r > 0 \)).
\( a + ar + ar^2 = a(1 + r + r^2) \).
\( 1 + r + r^2 = 1 + 4 + 16 = 21 \).
\( a(1 + r + r^2) = 11 \cdot 21 = 231 \).
Final Answer: The sum of the three terms is \( 231 \).
Let \( 0 < z < y < x \) be three real numbers such that \( \frac{1}{x}, \frac{1}{y}, \frac{1}{z} \) are in an arithmetic progression and \( x, \sqrt{2}y, z \) are in a geometric progression. If \( xy + yz + zx = \frac{3}{\sqrt{2}} xyz \), then \( 3(x + y + z)^2 \) is equal to ____________.